
£6.95 net

Cover Design by Jim Reader
Illustration by Martin Salisbury

- ISBN 0946195 14 5 (paper)

Sindair COMPUTERGi,HE

EDUCATIONAL USES OF THE ZX SPECTRUM
A guide-book for teachers and parents
By Tim Hartnell, Christine Johnson and David Valentine

Have fun and learn something. That is the message of
this book. It is addressed to parents as well as teachers -
in fact to all those who would like to do- something more
than thread mazes, play adventure games or zap aliens.

Tim=Hartnell and his collaborators have produced a book
packed with ideas and programs: simple and more
advanced mathematics, graphics, languages, spelling,
.reading, are some of the subjects which .are made
Interesting for the learner by using the computer's

` possibilities for interaction and moving display.

Christine Johnson contributes a detailed account, with
illustrations, of how she introduced a computer into an
infant school.

im

EducationalusesI of the
'•

-

^ iX S.ectrum
OI'It,
I ^+

In i.

,•
y.
^.'

The numerous appendices include suggestions for further
reading, a list of suppliers of Spectrum educational
software, introductions to LOGO and PROLOG, and a 	 cf. 3 'j
glossary.	 m m

<	
É

L
O

Published by Sinclair Browne Ltd., and marketed and distributed by
John Wiley & Sons Ltd.

+r TIM HARTNELL, CHRISTINE JOHNSON,

DAVID VALENTINE
k i

ricIir'^ S 	COMPUTERGUIDESB

•	 A ir-R^iår° CCIMPUTEPGUiDE

Educational uses

of the
ZX Spectrum

A guide-book for
teachers and parents

By
Tim Hartnell, Christine Johnson

and David Valentine

Sinclair Browne: London

• •
Contents

First published by Sinclair Browne Ltd
10 Archway Close, London N 19 3TD

Copyright © 1983 Tim Hartnell, Christine Johnson and David Valentine

British Library Cataloguing in Publication Data
Educational uses of the ZX Spectrum

1. Sinclair ZX Spectrum (computer)
I. Hartnell, Tim
001.64'04

ISBN 0-946195-14-5

Book designed by Jim Reader
Production Services by Book Production Consultants, Cambridge
Printed and bound by The Alden Press, Osneymead, Oxford
Typeset by Cambridge Photosetting Services, Cambridge

Acknowledgements – 7
Chapter One – Computers and Education 9
Chapter Two – Basic ideas: What is a computer?

How do computers work? 14
Chapter Three – Programming the Spectrum in BASIC 19

The keyboard, Building blocks, The first program,
Spectrum number, High roll, Additional commands

Chapter Four - String Handling and its use in Maths 37
CHR$ and CODE, TO, LEN, VAL, Correction to N
significant figures, Conversion to standard form

Chapter Five – Using the Spectrum for More Advanced
Mathematics 46
Number series, Mystery series, Fibonnaci numbers, Sum
of series, Square roots, Square roots by continued
fractions, Square roots by Newton's formula, Solving
equations by Newton's method, Finding factors,
Calculating N! (factorial), Solving quadratic equations,
Triangular numbers, Pascal's triangle, Conversion base 10
to binary, Round to nearest whole number, Express to n
decimal places, Generating prime numbers, Maths tests:
decimals, Maths tests: correlation/regression, Time series

Chapter Six – Using the Spectrum Graphics Effectively 82
Part One – User-defined graphics, Map symbols,
Chemistry symbols, Molecular weight calculations

Chapter Seven – Using the Spectrum Graphics Effectively 92
Part Two – The Nitrogen Cycle, Plotting, Circles, y = x2,
Tangent curve, Reciprocal graph, Sine design, Bouncing
ba ll , Scatter spiral plot, Shapes (circle, square, oblong,
semicircle, triangle, shape work sheet), Text manipulation
(upside down, sideways, framing, large letters), Character
generator

Chapter Eight – Using the Spectrum for English and Other
Languages 110

QA76.8.S625

Spelling test, Anagrams, Faster read
•

ing
Chapter Nine – Error Trapping 119

Matchsticks
Chapter Ten – Multiple-choice Quiz Programs 123

Multiple choice master
Chapter Eleven – Other programs of Interest 129

Histograms and bar charts, Sorting routines (numbers,
'alphabetical, name/age), Comparing unlike quantities,
Super Sketch, Interior angle of a regular polygon, Straight
line depreciation, Day of the week, Seconds timer, Mean/
standard deviation/variance

Chapter Twelve – Evaluating Software for the Spectrum 143
Chapter Thirteen – Using the Spectrum in Infant School, a case

history 147
What children learn, How it began, Use of scrap books,
Work cards, The byte game, The computer game, Storing
the equipment, Badges

Chapter Fourteen – Specific Applications in Infant School 163
Handwriting, Remedial reading

Chapter Fifteen – Maintaining Interest 167
Sound, Happy Birthday, Using the Spectrum's colours,
Bubbles, Parents, History

Chapter Sixteen – Brain Games 180
Mind-reader, Code-breaker, Magic stars, Hangman, The
Kimspot game

Chapter Seventeen – Some Final Thoughts 192
Appendix A – Suggested test paper on Spectrum BASIC 195
Appendix B – Ideas for exercises and programs 197
Appendix C – Binary converter 199
Appendix D – Logo, and an introduction to turtle

graphics 204
Appendix E – PROLOG – PROgramming in LOGic 209
Appendix F – Suppliers of Spectrum educational software 214
Appendix G – Publications	 which	 include	 software

reviews 216
Appendix H – Suggestions for further reading 217
Appendix I – Glossary of computer terms 222

•
Acknowledgements

A number of people have helped us write this book and we

would like to thank them for theiWeassis t ccknowledge the
Firstly, and most importantly, 	 Ald	 Sce he

work of Mr Crispin Hill, Headmaster,
Shackleford, whowas program

consultan
volume are based on project.

ManyMany of the programs
Mr Hill's booklet

`Introductory Notes and Simple Programs

for the ZX81'.
Others who contributed programs were:

Jeremy Ruston – NEWTON'S METHOD FOR
SOLVING EQUATIONS

– BINARY/DECIMAL
CONVERTER

David Perry – FACTOR FINDER
– TEXT MANIPULATION:

WRITING UPSIDE-DOWN
WRITING SIDEWAYS
FRAMING WORDS
LARGE LETTERS
CHARACTER GENERATOR

Jim Walsh – DECIMALS
Gwyn Dewey – SUPERSKETCH

Paul Toland – CORETS

Derek Cook – THE KIMSPOT GAME

Gordon Armin – FASTER READING
To avoid the pontifical `we', we've stuck to `I' throughout

most he thisrather hn nearly
than 	 one

all case
 the other, but any reference

and she' rather t	 ^
to one is intended to refer to botlo make effective use of

We hope this book will help you
7

•
• CHAPTER ONE

Computers and education

your Spectrum in education.
Tim Hartnell, London
Christine Johnson, Nottingham
David Valentine, Newthorpe

In this book, we'll be looking at a number of ideas for using
the ZX Spectrum in education. Whether you are a teacher
interested in using the computer to teach about computers
and computer programming, or whether you wish to use the
machine to assist with the teaching of another subject, you'll
find material which should be of interest and benefit to you.

Perhaps you're a parent, and you bought your child a
Spectrum in the hope that he or she would use it to help with
their school work. You may, however, have been somewhat
dismayed to find that the computer's main application seems
to be to demolish `aliens'. If this is the case, you'll find
information in this volume to ensure that — at least some of
the time — the Spectrum is used for the reason you bought it.
Although I will be addressing teachers from this point on,
much of what 1 say will apply to your situation. Please read
the material with this in mind, adapting it to your own
needs.

Microcomputers are now widespread within the education
system. A wide variety of machines have prevented, to some
extent, the creation of a universal library of programs (often
called `software'). The material in this book will go some of
the way towards rectifying that lack for the Spectrum. Many
programs included in this book are for educational use of the
Spectrum. They are here mainly to give information on how
such programs can be written and to give sample programs
which can be tailored to your needs.

The demands of specific subjects are clearly defined. It is
unrealistic to expect that a program written for one subject
will apply to another one, or that a program created to assist
students at a particular level in one subject will be of
anything other than limited use for students working on the
same subject at a different level. Nevertheless, if you use
this book as a guideline, as a source of ideas, you'll find it

8
9

should save you a lot of time when •paring material for
your own students or children.

It is a somewhat disturbing fact – but one which must be
faced from the outset – that many of the children you'll be
dealing with know far more about computers and computer
programming than you. Being brought up with the micro has
already produced a generation of whom many do not feel
even vaguely threatened by the computer. The exotic jargon
– bits, bytes, RAM and ROM – is a sea in which many young
people appear to swim without undue problems.

There are more `micros per head' in Britain than in any
other country. Thanks to government programs which have
promoted the acquistion of computers, and the range of
locally-built, cheap microcomputers which is available, the
penetration of computers into schools is approaching the
point where there is at least one computer which the
students can use, in each school. But this abundance of
machines has brought its own problems. The number of
teachers who can make effective use of this exciting resource
is limited. It is this problem I seek to address in this volume.

I've included a section designed to teach the rudiments of
programming in BASIC (the language the computer uses, an
acronym for Beginners All-purpose Symbolic Instruction
Code, developed at Dartmouth College in America in 1974).
After you've taught yourself to program with this section,
you'll probably use this as a framework for teaching BASIC
within the classroom.

This book must make certain assumptions about teaching
and your methods of teaching. If you do not agree with all I
say, it is possible to adapt the material to your own needs. I
am addressing a wide audience with this volume, and it is
inevitable that some sections will be more relevant to your
needs than others.

You will probably also disagree quite strongly with some
of my assertions and assumptions. By all means discard
anything which seems incorrect to you, inappropriate for
your teaching methods, or inapplicable in your school
environment. As I said a little earlier, look on the book as a
source of ideas. No one can really say `This is the only way to
use the Spectrum in your teaching situation'. Please do not
assume that I am suggesting this, although from time to time
the book may appear, in fact, to be advocating such an
inflexible position. Rather than spend the entire volume

Computers and education

ualif in every suggestion tion with `if it seems appropriate to
y	 y gyou', `if it fits into your philosophy of education ' or `if ^t

appears valuable for your needs at the moment ' , I will

assume that you will reject what you don't want.
There is a wide range of materials in this book I of all of

it will be directly applicable to your needs, thoughall
of it will be of interest. Most of it should help you work out
ideas to use the Spectrum for your own needs. Use the book
however you like. The sequence of material presented here
is only one of many possibilities. Dip into the book at
whichever point seems relevant to your needs.

Note that there is a glossary of terms at the back of the
book. After all, whole dictionarie s of computers have been

published. I've tried to select the most common computer
terms, but this is by no means exhaustive. You'll find that
any technical term whose meaning is not clear from the
context in which it appears, will be further explained in the

There . are many ways you can use the Spectrum inglossary.

education. In this section, I'll discuss just a few of them. This
list is by no means exhaustive, and it should start you
thinking about other ways you can use the computer for your

own needs.The Spectrum can be used to help teach a subject by
arranging the facts in a way whichis ntereinteresting,

cleardisplayed, –
possibly – interactive. That is, a program
for example, the table of the elements could be set up in
such a way that colour was used to highlight the 12 which do
not occur naturally (possibly with FLASH used to indicate
unstable ones), or the program could be written so that a
group with particular properties could be easily isolated.
When you start thinking about this simple example, you can
probably see that any body of material which can be
presented in tabular form can be presented in a way which is
interesting, and invites interaction from students. There is

inno way a simple

printed
hata

table a boo
well-presented computer-generated

in the same	 y
table can do.There are a large number of programs which are generally
classed as `spread-sheet calculators' which invite users to
handle data in a `what if' environment. These programs

allow theuser

pproduce

enter informatio
abalancetsheet, and then enter such

and sales,	 p

Computers and education

10
	 11

Computers and educationComputers and education

questions as `What would happen if w_e doubled?'
'What would happen if sales rose 3 1 % per month for the
next three months?', or `What will happen to our
profitability picture over the next financial year if we lose
the Jones contract?'. The program then takes over, changing
all figures affected by the hypothesis you have advanced.
There are ways in which this process can be used to enrich
the experience of students working with material in tabular
form as outlined in the previous paragraph. For example, a
simulation program could allow students to mix chemicals in
varying proportions – even to the point of explosion.

The Spectrum can be used in mathematics, and several
applications in that area are outlined in detail in this book.
Although the computer can be used, more or less, just as an
electronic calculator, using it in this way rather misses the
point (and certainly makes minimal use of the machine's
potential). As you'll see in the section on maths, there are a
great many ways of using the computer effectively in this
area.

I mentioned using the computer to produce tables of
information which encouraged interaction with students.
There are many things, in addition to tables, which can be
presented by the computer to encourage studentinvolvement, such as maps for geography and pie- and
bar-charts for a variety of subjects. Some areas of
knowledge, such as the ideas of Malthus regarding the
interaction between available resources and population
growth, could be modelled extremely effectively on the
computer. In subject areas like this, it is hard to imagine a
more effective way of getting the message across than by
computer simulation.

Returning to the subject of maps, there is much that can
be done again using on-screen modelling, to make ideas
come alive. Animated maps, for example, could show such
things as the effects of land height on rain distribution and
the way the population of an area changed during the
Industrial Revolution. A number of complete pictures can
be stored in the Spectrum as strings, and these can be
printed one at a time over each other.

One of the most common uses of the Spectrum in
education is to present multiple choice questions. A multiple
choice quiz framework which you can use to create tests for
any subject of your choice is introduced a little later in the

•. be looking at a simpler program which does
book We'll also	 g
not give a series of choices, but simply looks for a correct

The fact
.	that the majority of computers in use in homesanswer

appear to be used at least part of the time for game-playing,
shows the immense fascination game-playing with
computers can exercise. Rather than decry this, it seems
better to me to capitalise on this fascination, and ensure,
whenever possible, that some aspects of computer game-
playing (such as dramatic rewards for achieving a certain
score) are incorporated into `straight ' programs.

Carrying this idea further, I've included a chapter of
`brain-stretching games' which, while they do not teach a
specific subject, may well assist in the development of
number and reading skills. From this chapter, you can see
how many computer games can be modified to include
sufficient educational `return ' to make them worth including

in your school ' s computer activities. At the very least,
having such material on tap can be useful in maintaining
interest in the computer, and act as a break from straight

learning activities.
startin Such tudents	

useful
off with computers.

icebreakers for	 g

12
	 13

Basic ideas

CHAPTER T•O

Basic ideas: What is a computer?
How do computers work?

Although it is no more necesssary to know how computers
work in order to make use of them, than you need to
understand the complexities of the internal combustion
engine to drive a car, it is inevitable that you'll one day be
asked `How does a computer think?' or some such question.
It is useful, anyway, to have at least some understanding of
this.

The American National Standards Institute (ANSI) has
defined a computer as a `device capable of performing
systematic sequences of operation upon data, including
numerous arithmetic and logic procedures, without
intervention by a human operator during the run'. This is
not a definition which produces illumination easily. Let's
take it section by section.

The first important phrase is `systematic sequences of
operation upon data'. The Spectrum is not like a radio. You
cannot just plug it in and expect that it will do very much. If
you connect your Spectrum to a television, and tune it in
correctly, the computer will at least put an identifying
message on the screen. But that's about it. Unless you
program the machine to do something else, it will just sit
there.

A computer needs a program in it before it can do
anything. This book contains many programs, and a host of
others are available in magazines. You can also buy
programs on cassette tapes, or on microdrives, which only
need to be loaded into the Spectrum in order to run.

As you'll learn shortly in the `programming primer' part of
this book, each statement (or line) within a computer
program starts with a line number. The computer, unless
told to do otherwise, works through a program line by line,
in line number order. In other words, it carries out the
instructions of each statement in a `systematic sequence'.

14

`Data' in the ANSI definition, refers to any informatio
n – be

it numbers, symbols or characters, or a combination of these
– which the computer can process.

That covers the first part of the definition. The `numerous
arithmetic and logic procedures' which the computer can
perform are fairly easy to understand. The adjective
`arithmetic' covers all the standard number manipulatio

ns –

such as adding, subtracting, raising to a power, determining
the square root, etc. – while the `logic procedures ' which the

computer can perform include comparisons (of size, length
or some other characteristic, such as position within a series)
and the group of activities governed by the laws of 'Boolean

algebra '*
 which can make decisions based on AND and OR

(if this is true AND this is true, then do this ... or if A is
true and B is not true OR C is true, then carry out sequence
D). The numerical manipulations, and the decision-making
based on AND/OR conclusions, governs all the activities of

the computer.The final part of the ANSI definition, 'without

intervention
 by a human operator during the run', is crucial.

A computer is not the same as an electronic calculator. A
calculator demands a series of responses to prompts, while it

is operating. Aecomputer as from a cassette, from ardisk,
needs

from other place
 elsewhere within the program).

The Spectrum follows the instruction s you give it, carrying

out precisely the task you've ordained for it. Give it a
program to generate multiple choice questions, and the
Spectrum will do so (assuming the program has been

halfway rig)tthe run the Spectrumwill ot start playing
halfway through

*George Boole, an English logician and mathematician
(1815-

1864)
was the first man to formulate laws which placed logical

decisions within a mathematical framework. `Boolean algebra',

which he developed, allowed operations (such as the AND and

OR we mentioned, along with the rules governing the conclusions

of such comparis ons – IF this THEN do this) to be carried out in
accord with strict mathematical laws. Prior to the development of
Boole's ideas, it had been assumed that logic was a branch of

philosophy. With his books
Mathematical Analysis of Logic (1847)

and Investigation of the Laws of Thought (1854), Boole showed

clearly that logic was a branch of mathematics.

15

Basic ideas

an Irish folk song, or fill the screen with a wave of invaders
hell-bent on the destruction of earth. The Spectrum will
carry out your instructions methodically. Any apparent
errors in judgement it makes will be yours.

There. is no need, however, to be intimidated by this.
Thanks to the unambiguous nature of the Spectrum's
BASIC language, it is extremely easy to tell the machine to
do exactly what you want it to do. As you'll see in the
programming primer section, much of BASIC is very close
to English. The programming word PRINT, for example,
means just that. It tells the computer to PRINT something
on the television screen. Other words you'll meet which are
exactly (or very close to) what they mean in ordinary
English, are AND, OR and IF.

There are five basic parts of every computer, as you can
see in this diagram.

Each computer must have a way of getting information into
it from the outside world. This is indicated by the section
marked INPUT on the left-hand side of the diagram. The
input, in the case of the Spectrum, is usually the keyboard,
although devices are available which allow some limited
information to be fed into the machine via a microphone. In
addition you can call up some information from an external
memory device (the cassette recorder, or a microdrive).

The information which has been entered via the INPUT
section then goes to the three thinking parts of the machine.
One, which we've called CONTROL, acts as a traffic
policeman and timekeeper on the whole system, making
sure that the activities of the computer occur in the correct
sequence and at the right time. The ALU (arithmetic and

INPUT CONTROL

t

OUTPUT

MEMORY

Basic ideas

•
logical unit) makes the decisions and does

the sums,
 s,	 and

the

MEMORY	
a

g	 (which we'll look at in a litt
moment) holds not only the intermediate results of what also on at the time,
the computer happen

 the
working
computer needs in order to be

c ontains the informatio
 to do such things as add numbers together, and to make

decisions.Finally, once the computer has reachedu onacluseiosection
sent to the outside world (that is, toy)

we've calledd OUTPUT.

our diagram

suggests (or to

	
the television

 ration

Although

 the printer, o
of these).	 ests that all the parts of the

computer are distinct, it is not – as you probably realise – as

clear-cut
chip ascombinesmade the majority of the activities coved by

the headings CONTROL, ALU and MEMORY.
However,

it is convenient to th
ink by their

partct vitieshe computer in

separate sections defined Y t
I said we'd look at me he first `frightening' bit of jargon.

here we come up against
The acronyms

ROM magazines.
RA

 Despite the factrtha
throughou

computer books and	 g appear outside the world of
are words which do not app
computing,	

th

 embody concepts which a

r

e not too difficult

to grasp.	 computer
There are two types of memory in a comp 	

(although(
 first type is

these may	 stored	 r^'Read-Only Memory. Although the
ROM, whichh stands fo

	

 needs a program 	 you buyi t.Locked
contains a great deal of knowledge
into a chip inside the case is the information

the
understand

needs to be able to run the television screen, to

what you are typing different quantities
gl

	 and ao onnYou
together, to compar

can only 	 this informatilondwhen you need

the chip.
You
You	 y read

to. Therefore, the memory which holds the basic intelligence

and raw working information o
f the Spectrum is called

Read-Only Memory (ROM).
computer needs a less permanent

In contrast to this, the comp li
area of memory to store the program you have currently
entered, and to store the intermediate results of its

17
16

Basic ideas	

•
calculations. You can jump about within this memory at
random, moving to the start of it if you like, or to anywhere
within it. Because of this random access feature, the
impermanent memory is called Random Access Memory
(RAM).

The only things you need to remember in order to use the
terms ROM and RAM accurately is that ROM is fixed
memory that tells the Spectrum how to do things like add
numbers together, and RAM is the impermanent (computer
people often say `volatile') memory which holds the current
program, and the results of processing. You can't alter
ROM, but you can, and do, modify RAM.

•
CHAPTER THREE

Programming the Spectrum in BASIC

In this section of the book, we'll be looking at computer
programming on the Spectrum in BASIC. The material here
is intended for your own use, so that you can learn to
program. Once you've done this (and you'll be pleased to
discover it is a surprisingly easy task), you can use the
information here as the basis for teaching your own students
to program.

You will find, however, that you'll have to expand this
material to some extent. Whole books have been written on
how to program the Spectrum, and we can hardly hope – in
just part of one book – to cover the ground in the same
depth as some other books.

The Keyboard
The first thing you need to learn, unfortunately, is your own
way around the keyboard. I say unfortunately because the
keyboard can seem bewildering and intimidating to first-
time users. However, as it would be impossible (obviously)
to program without having some degree of mastery of the
keyboard, it is here that we must start. (By the way, I'll
assume from now on that you have a Spectrum turned on as
you read, and that you'll enter the material I describe as you
come to it.)

Once you've got the computer plugged in, following the
instructions in the manual, and your TV switched on, you'll
see the copyright message at the bottom of the screen. Now
press the ENTER key. The message will disappear, and a
flashing `K' will appear. This is the cursor.The cursor will
follow you along a line as you type it, will indicate errors in
program lines, and the actual letter it is made up from (such
as the K in this case), tells you which mode the computer is
in. As you can see, it does quite a bit.

18
	

19

Programming the Spectrum in BASIC •

The three most important keys on the computer are those
marked CAPS SHIFT, SYMBOL SHIFT and ENTER. Find
them now. The ENTER key is used after you enter any
instruction, program line or response to a question from the
machine. It tells the Spectrum to act on whatever you have
just typed in.

CAPS SHIFT works just like the shift key on a typewriter.
Normally the computer works in lower case letters.
However, when you hold down shift, the letters come out in
upper case. Hold down the CAPS SHIFT and then press the
CAPS LOCK key (the key marked with the number 2) and
all letters from then on will be in upper case.

If you look closely at the keys, you'll see most of them
have a word or symbol (such as ?, * or +) in red on them.
You get these by holding down the SYMBOL SHIFT key
(whose legend is also in red) and then pressing down the
relevant key.

You `clean the computer out' at any time by pressing the
A key, which has the word NEW written on it in white.
NEW is a drastic command. There is no way to get back any
program material which was in the computer after NEW has
been pressed, so regard the A key with a little awe. Press the
A key now, so that the NEW appears on the screen, and
then press ENTER. The screen will go black, and then clear
to show the copyright notice again.

Now that the computer memory is empty, we can start our
exploration of the keyboard in earnest. Many of the keys
have words written on them in white. These are called
key-words. One of the great features of the Spectrum is its
`one-touch key-word entry system'. This means that, instead
of typing in a computer programming word such as PRINT
letter by letter as you need to do with most other makes of
computer, you just touch the P key (which has the word
PRINT written in white on it) and the word PRINT appears
at the bottom of the screen.

You'll recall that the cursor was a flashing K. The K
stands for key-word. Whenever you press a key which has a
key-word written on it in white, and the cursor is a K, you'll
automatically get the key-word appearing on the screen.

However, once the key-word has appeared, as you can
verify if you look closely, the K cursor changes into an `L'.
This stands for letter. Press one of the alphabet keys now,
and you'll see the relevant letter appearing. The Spectrum

•	 Programming the Spectrum in BASIC

works more or less like a typewriter when in the 'letter
mode'.

This is the time to try out the CAPS SHIFT and CAPS
LOCK keys, to change the lower case letters appearing on
the screen into upper case ones. (You'll see that once you do
this, the L cursor will change into a `C' to remind you that
CAPS LOCK has been engaged.)

The bottom of the screen may now be getting pretty
crowded with the letters and so on you've been typing. Pull
the power plug out, wait a few seconds, and then replace it.

So far, we've looked at the key-word and the letter
modes. You know, now, how to get all the things which
appear actually on the keys: key-words, letters and the
material printed in red (which, as you'll recall, you get by
holding down the SYMBOL SHIFT key and pressing the
relevant key at the same time.

However, there is more to the keyboard than the material
we've discussed so far. You can see there are words in green
above the keys, and words in red below them. You get the
words above the keys by pressing down both shift keys at
once (the CAPS SHIFT and the SYMBOL SHIFT) then
letting them go. Do this now, and then have a look at the
cursor. It has changed into an `E'. This stands for `extended
mode'. In this mode, the computer accepts the functions
which appear above the keys. Press, for example, the T key,
and you'll get RND (which is the function for random
numbers). The cursor will immediately change back into an
L after a function has been selected.

Underneath the keys are legends in red. You get these by
pressing both shift keys at the same time as when going into
extended mode. However, while you release the left-hand
one (CAPS SHIFT) you do not release the right-hand one
(SYMBOL SHIFT). Still holding down SYMBOL SHIFT,
press any key with a word or symbol underneath it, and the
relevant word will appear. Pressing the Z key, for example,
while in the extended mode and holding down the SYMBOL
SHIFT will get you the word BEEP.

We have just about covered our tour of the keyboard, and
its modes and cursors. There is one more we need to know
about, the graphics mode. Hold down the CAPS SHIFT
key, and then press the 9 key, which has the word
GRAPHICS above it. The cursor will change into a `G'.
Now, press any of the keys on the top row of the keyboard,

20
	

21

Programming the Spectrum iii BASIC •
and you'll see the little patterns printed on the keys appear
on the screen. Hold down CAPS SHIFT and press the same
number keys again, and you'll get the inverse of those
patterns. You get out of the graphics mode by holding down
CAPS SHIFT, and pressing the 9 again.

As I said at the outset, it is unfortunate that this tour of
the keyboard and its cursors needs to be carried out before
you can proceed. However, you've now covered most of the
necessary ground. The only one thing you might need to
note is DELETE which is written above the zero key.
DELETE rubs out words working from the end of a word
towards its start. You use it by holding down the CAPS
SHIFT key, then pressing (or holding down, waiting for the
auto-repeat to start) the zero key. I suggest you stop at this
point, and go back and read through the material again.
Once you're familiar with the keyboard you can continue.

Building Blocks
All BASIC programs are made up from a number of
standard words, the building blocks of a program. These
`blocks' include words which are close to English (such as
PRINT, THEN and PAUSE) and which are understood by
the computer to mean more or less what they mean in
English. Other words (like 1NKEY$, ATTR and
SCREEN$) are foreign territory.

The most common word in most programs is the word
PRINT. You use this, as I guess you'd imagine, to put
material on the screen. Try this now. Clear out the computer
by disconnecting the power for a few seconds, or by using
DELETE and NEW.

Press the P key, to get the word PRINT, and then type a
number after it, as follows:

PRINT 7

Now press the ENTER key (remember, you need to press
the ENTER to get the computer to act on the material
you've just typed in) and a 7 should appear at the top of the
screen.

To use the Spectrum as a calculator, follow the word
PRINT with a sum, such as the following:

PRINT 7+4-1

• Programming the Spectrum in BASIC

(I'll assume from now on you'll press ENTER after entering
each line, so I will not keep reminding you to do so.) The
result of the sum, 10, should appear on the top of the screen.

You can make the arithmetic you want the computer to
solve as complex as you like. However, you'll see that the
keyboard does not have a divide symbol. And, as you can
easily verify for yourself, using the X to indicate
multiplication, will simply confuse the computer. The
asterisk (*) is used to indicate multiplication, so PRINT T3
will give 21. The slash (/, on the V key) indicates division.
PRINT 21/7 will give an answer of 3.

The other symbol you'll need is the little arrow on the H
key (which means raise to the power) so 3 T 2 is the
Spectrum's way of indicating three squared.

Test Program
We'll start with a simple program which will be able to teach
a great deal. Enter the following program into your
Spectrum, pressing ENTER at the end of each line. If
you've entered the line correctly, you'll see it move to the
top of the screen when you press ENTER. If you've made a
mistake, you'll find the line will not be accepted by the
computer. The cursor will move to the part of the line where
it thinks the problem exists, which will help you track down
typing errors.

Anyway, type in the following, and then press the R key
(to get the keyword RUN) which tells the Spectrum to
execute your program:

10 REM test rioafof
20 PRINT "Enter a number"
30 INPUT a
40 PRINT a;" and another-
50 INPUT b

CL5
70 PRINT "Your numbers were

a" and	 b
. 60 PRINT
90 PRINT "They add up to ";a+b

When you run this, you'll see the following on your
screen:

Enter a number
123
123 ar}d another
68

22
	

23

Programming the Spect rum in BASIC •

your numbers were 123 and 88
They add up to 211

We will go through this program line by line. It is quite
amazing how much can be learnt from it. Firstly, as you can
see, each line begins with a line number. These line numbers
can be any numbers at all between 1 and 9999. Generally,
the computer will execute the lines in order, from lowest to
highest (although, as you'll see shortly, this is not an
inflexible rule).

The first line of the program starts with the word REM.
This stands for remark. Any REM line in the program is
ignored by the computer. REMs are included simply to
convey information to someone reading the program. A
REM statement will often be used at the start of a program,
as in this case, to say what the program is meant to do.
REMs are also used within programs to point out what the
following program line, or program section, is doing. REM
statements make it much easier, when you return to a
program after some time, to work out (a) what the program
is supposed to do, and (b) how it does it.

In line 20, the command PRINT is used to get the words
"Enter a number" on the screen. You'll see that these words
are enclosed within quote marks. You have to enclose letters
within quote marks if you want the computer to handle them
as words. Any material within quote marks, such as in the
program line, is called a string.

Line 30 allows you to enter a number of your choice.
INPUT means that the computer waits for the user to enter
something, such as a number as in this case. The letter `a'
after the word INPUT is a numeric variable. A numeric
variable is a letter (or any combination of letters and
numbers, so long as it starts with a letter) to which the
computer can assign a number. From then on, the computer
treats the numeric variable as if it was the number. You can
see this, further down the program, where the computer
uses `a' (and 'b', whose value is entered in line 50) in lines 70
and 90 to print out firstly the numbers you've entered, and
then to work out the value of their sum.

The word CLS in line 60 means `clear the screen'. You
probably noticed that the screen cleared after you entered
your second number, before printing up the final two
statements.

• Programming the Spectrum in BASIC

You can see that there is a great deal we have learned
from this very brief program. Note as well (and this is
important) that you need to use a semi-colon to join the `a'
outside the quote marks in line 40 to the rest of the material
to be printed.

Spectrum Number
Get rid of that program from your computer by using NEW,
then enter the following one.

There are a number of new elements in this program
which could be tricky to enter, so I suggest you start typing
the program in, and if you have any problems, read the
notes referring to that line.

10 REM M 'Spectrum number
20 LET a =I£-IT ilnt,tl~?*ço?
30 LET auess=0
4-0INPUT"ti}-,at I.E. your first n

ame t. ",b$
50 PRINT "tie t	 , "; b$
60 PRINT '"I am thinking of a

nitm3,at „
70 PRINT "betetteer, on and 50 w

hi ch uou••
80 PRINT "hai.e. to try and gus

s.-
 90 LET g uess = guess -r 1
100 PRINT --This i s guess num

ber -;guess
110 INPUT "Enter uour guess -;c
112 GLE
115 PRINT "Your guess, "; b$; ",

was '
120 ÎF c=a THEN PRINT "t,•Ie i l don

e, t2cau g ot it rights": PRINT "St
took you -;guess;" gt_aesses' • : LT

9P130 IF c) a THEN PRINT -That n u m
her i5 too high

140 0 IF c<a THEN PRINT "That n!. ► ara
ber is too Lou-

150 GO TO 90

This is what it looks like when it is running:

What is your first name? #Tim

Hello, Tim
I am thinking of a number
between one and 50 which you
have to try and guess.

This is guess number 4

24
	

25

Programming the Spectrum in BASIC •

Enter your guess, #7

Your guess, Tim, was 7
That number is too low

This is guess number 5

Enter your guess, #9

Your guess, Tim, was 9
That number is too high

This is guess number 6

Enter your guess, #8

Your guess, Tim, was 8
Well done, you got it right!
It took you 6 guesses

10 – This REM statement is much the sane as the first
line in the first program.

20 – This line uses the word LET (the key-word on the L
key) to assign a value to the variable `a'. You'll see that after
the equals sign in this line, the word INT (which reduces a
number with a fractional part to the next lowest whole
number). You get INT from the R key, pressing both shift
keys down first, then releasing them, then pressing the R
key. The open and close brackets come from the 8 and 9
keys respectively, and you get these by holding down the
SYMBOL SHIFT KEY then pressing the keys required.
The asterisk (multiplication sign) is on the B key. Again the
SYMBOL SHIFT is needed to get this. This line uses the
random number facility of the Spectrum to generate a whole
number between one and 50. Use a statement in the same
form as this line whenever you need a random number. The
number within the brackets is the highest one in the range
you want.

30 – This gives a variable called `guess' a starting value of
zero. Remember, a numeric variable can be a combination
of letters and/or numbers, so long as it starts with a letter.

40 – This INPUT statement is somewhat different from
the first one we looked at. As you can see, there is a
statement within quote marks before we get to the `b$' at the
end. When you run the program, the words in quote marks
after an INPUT line appear at the bottom of the screen. The
input prompt, as it is known, is a very useful feature, and

•	
Programming the Spectrum in BASIC

allows you to tell the user exactly what information the
computer is expecting. At the end of that line is a variable
followed by a dollar sign (`b$'). This represents a string
variable (as opposed to numeric variables, which we have
been using to date). A string variable can be any letter of the
alphabet, followed by a dollar sign. When you enter your
name, in response to the input prompt, it is assigned to `b$'.

50 – This is a fairly standard PRINT line, which prints up
"Hello," then follow this with your name.

60 – This is a standard PRINT statement .. .
70 – . . • as is this .. .
80 – ... and this.
90 – The value of the numeric variable `guess' is increased

by one. It is good practice to use explicit names for
variables, such as this use of `guess'. Although it is fairly
easy to keep track of what each variable in a program
represents when the program is short, you'll find it becomes
increasingly difficult to do so when your programs get
longer. In such cases, you'll see how valuable explicit
variable names can he. (For example, in the very long chess
program in my book Dynamic Games for the ZX Spectrum
Sinclair Browne, 1983) the variable P stands for the white
pawn, K for the white king, and so on, with PB for the black
pawn, and KB for the black king. This was of great help
when the program was being written, and makes it simpler
for others to follow through.)

100 – This looks like a standard PRINT statement, except
for the three apostrophes ("') at the start of the line. (The
apostrophe is on the 7 key.) When the Spectrum comes
across an apostrophe at the start of a PRINT statement like
this one, it moves one line down the screen. So, the three
apostrophes here move the PRINT position down three
lines, as you'll see when you run the program.

110 – This uses another INPUT prompt, this time ending
with the variable `c', to accept your guess.

112 – CLS clears the screen after you've pressed ENTER
following entering your guess.

115 – This line is printed, to remind you of your guess.
Note that it uses both your name (`b$') and your guess (`c'),
linking them to the other material to be PRINTed with
semi-colons.

120, 130, 140 – I'll consider these three lines together as
they perform similar (very important) functions. Note that

26
	 27

Programming the Spectrum in BASIC.

they all start with the word IF. When the computer comes
across an IF statement, it looks at the condition which
follows the word IF and if it is true THEN carries out the
instruction which follows the word THEN. IF and THEN
always appear together in the same line. IF the weather is
cold THEN turn on the heater, IF the television is broken
THEN call a repairman, and so on. Line 120 compares your
guess (`c') with the computer's number (`a') and IF it finds
they are equal, THEN goes on to the rest of the line. You'll
see that line 120 contains three complete program
statements. You can put more than one statement in a single
line number, if you put colons between them. The first part
of line 120, after checking that the numbers are the same,
prints up the congratulation message, and the second
PRINT statement tells you how many guesses it took.
Finally, the program stops at the STOP statement. Note that
if the condition being tested by IF is found to be false, then
none of the other statements following THEN on that line
number will be executed. Instead, the program will
immediately go to the next line. You'll see that lines 130 and
140 test to see how the computer's number compares with
your guess, and print appropriate messages. The THEN is
on the G key.

150 – You'll recall I pointed out a little earlier in this
section that a computer generally follows through a program
line by line. Two of the commands which can redirect its
action are GO TO and GO SUB. We'll be looking at GO
SUB a little later. GO TO (it is two words, but is considered
as a single word, and comes as a single key-word, from the G
key), as you have probably guessed, simply redirects the
program back to line 90, where the whole cycle begins again.

Enter the program, and run it several times, then return
and reread these notes. Make sure you understand the
material they contain before continuing.

I realise that the material in this section may seem heavy
going. After all, we are covering – in just a few pages –
topics that other books spend several chapters explaining.
However, if you take it slowly, it should all make sense.

You'll find this is an ideal program to use as an ice breaker
for students who have not had previous experience with a
computer. It uses a student's name (which never fails to
impress a first-time computer user), and is sufficiently easy

• Programming the Spectrum in BASIC

to play to ensure that any student can `win' it in a short time,
thus ensuring the first contact with the computer is an
enjoyable one.

Save the program on cassette once you're sure you
understand how it works (full instructions on the use of the
SAVE and VERIFY commands are given in your manual).
We'll be coming back to this program in due course when we
learn about colour, so you'll need it on hand. I suggest you
save each program three times on a single side of a C-12
cassette, and put nothing else at all on that side of the
cassette. Although I realise you can save a bit on cassettes by
putting a number of programs on a C-60 or C-90 cassette,
the `frustration cost' of trying to locate the program you
want is so great it is not worth the trouble. If one copy of
your program fails to LOAD, all you need to do is try to
load the next one. Also, if one copy of the program is
accidentally wiped, or the tape is damaged, you have backup
copies.

High Roll
We'll be covering a lot of ground in our next program as
well. In this program – HIGH ROLL – you and the
computer take it in turns to roll a pair of dice. The player
with the highest total wins that round. (By the way, I believe
that game-playing, and game-writing, is the easiest and most
pleasant way to learn computer programming. That is why
the programs at the early part of this section on how to
program, are all games.)

In this program, we'll be covering the following important
additions to your BASIC vocabulary:

– PAUSE
– BRIGHT
– The use of subroutines (with GO SUB and RETURN

commands)
– FOR/NEXT loops
– BEEP

Here's what it looks like when you get it up and running:

Press a n y Key t o rot(the dice

D i e o rg e fe L t 6
Die t wo fell. d-

28
	 29

Programming the Spectrum in BASIC

^o your score is 10
Stand b g for my roil,.
Here we go G .,
Die one felt 6
Die two fe L L 2

So m g score is B
and you're the winner!

Enter the program, run it a few times, then retu rn to the
book so we can go through it, line by line.

10 REM Hi g h h Roll20 PRINT -Press any key to rothe dice-
30 PAUSE 0
40 GO SUB 1 000
70 LET h è.r irraïr =a +b
BO PRINT — So g our score 	 ";hu^it an
90 PPi dS E 50

100 PRINT BRIGHT 3; — Stand by f
or my roll-

110 PAUSE 50
120 PRINT — Here we a o .
130 PAUSE 50: GO SUB 1000
140 LET compt.f ie r=a +b
150 FRaNT "S`_ ?3 g score is 'corrs

puter
1E0 IF computer=human THEN FRIN

T - and it's a drawl-
170 IF computerrhF.3fPåan THEN PRIM

T "and I'm the winner!"
160 IF computer <human THEN PRIM

T -and g O €.r ' r e the winner!"
190 PROSE 300
200 RUN

1000 REN This is subroutine
1010 LET a=INT (RND *E) +1
1020 LET b=INT iRND*E3 -t-1
1030 FOR g=1 TO 30
1032 BEEP .03, g : BEEP .03,50-g
1036 NEXT g
:040 PRINT —Die one fell ";a
1045 PAUSE 50
1050 PRINT "Die two felt -3b
1055 PAUSE 50
1060 PRINT
1070 RETURN

10 – This REM statement simply identifies the program
20 – This is a standard PRINT statement such as we've

encountered before
30 – The PAUSE command (on the M key) holds the

•	
Programming the Spectrum in BASIC

display for a length of time related to the number which
follows PAUSE. If PAUSE is followed by 50, (as in PAUSE
50), or 60 in the USA, the computer will stop execution for
one second. Touching any key during PAUSE terminates it.
PAUSE 0 will wait for ever so the effect of this line is to hold
program execution until you obey the instructions in line 20
to "Press any key to roll the dice".

40 – When the computer comes to a GO SUB (for GO to
SUBroutine) command, it goes to the line which follows the
words GO SUB (like GO TO, although they are a pair of
words, they always appear together and are treated as a
single word; it is on the H key). So far, it has behaved in a
similar way to a GO TO command. However, the difference
occurs when the computer comes to the word RETURN in
the subroutine. In this program, the subroutine starts at line
1000. The Spectrum goes to line 1000, and then follows
through each line in order from that point. When it gets to
line 1070 it comes to the word RETURN mentioned above.
At this point, the program returns to the line after the one
which sent it to the subroutine. In this case, it returns to line
70 (the first line which appears after the 40, which sent it to
the subroutine). Subroutines are used when there is a
segment of the program which we wish to use in different
parts of the overall program. Rather than include the whole
thing each time it is needed, we can use a subroutine. You'll
see from the program printout that the computer rolls two
dice for you and then two for itself. The dice-rolling all takes
place within the subroutine so the part of the program which
actually `rolls the dice' can be used twice.

70 – This is the line after the GO SUB call, so this is the
line to which the computer returns. Within the subroutine
(see lines 1010 and 1020) numbers chosen at random
between 1 and 6 are assigned to the variables `a' and 'b'. On
returning from the subroutine, these are added together and
a variable called 'human' is set equal to their total.

80 – This prints up your score.
90 – The PAUSE command makes the program wait for

one second.
100 – A message is printed up, using BRIGHT. You'll

find BRIGHT at the very bottom of the keyboard,
underneath the B key. There are several ways to modify
print output on the screen, including the use of INVERSE
(which prints white letters on a black background) and

30	 31

Programming the Spectrum in BASIC •
FLASH which turns the printout from black on white to
white on black over and over again. Here, as you'll see when
you run the program, BRIGHT has brightened the little
strip of screen upon which the words "Stand by for my go"
are printed. If a word like BRIGHT is followed by a 1 (as in
BRIGHT 1), it means `turn that command on'. If it is
followed by a j (BRIGHT 0) it turns that command off.
BRIGHT and its companion words, as will be made clear in
the next program, can be used `globally' or `locally'. If
BRIGHT 1 appears in a program line all by itself, then it
alters all print output for the rest of the program. In this
case, it is said to be acting globally. If, as in this program, the
BRIGHT appears as part of a PRINT statement, it only
affects the output of that particular line. It is, as you can see
in this program, being used locally.

110 – Another wait for one second. Using PAUSE in this
way to pace a program's output is very effective, especially if
you want to give the impression that the computer is
thinking while trying to solve a puzzle. Often, of course,
PAUSE is used just to make sure people using a program
have time to read it before the message is cleared from the
screen.

120 – The message "Here we go ..." is printed on the
screen, with the apostrophe moving the print output down a
line.

130 – This is a multi-statement line, with the two
statements being separated, as you can see, by a colon.
After the one second wait, the subroutine is visited, for the
second time during the program's run.

140 –
returns to the line after the one which sent it to the
subroutine. In this case, line 140. Here the variable
computer is set equal to `a' and `b', the numbers generated in
lines 1010 and 1020.

150 – The result of the computer's dice throw is shown on
the screen.

160, 170, 180 – These three IF/THEN lines compare the
values of the two variables, computer and human, and
determine which of you have won the round.

190 – The program waits for six seconds.
200 – A new run is initiated. Note that you can use RUN,

just as you can use just about every other key-word, within a
program.

Programming the Spectrum in BASIC

1000 – This REM statement introduces the subroutine.
1010 – The variable `a' is set equal to a number chosen at

random between 1 and 6.
1020 – The same happens to variable V.
1030, 1032, 1036 – These three lines form a FOR/NEXT

loop. Just as GO SUB and RETURN always appear
together, so do FOR and NEXT. A FOR/NEXT loop is
used for repeating the part of the program which lies
between the FOR and the NEXT lines, the number of times
specified by the difference between the two numbers in the
FOR statement. In line 1030, which starts the loop, we read:

FOR g – 1 TO 30
This ensures that the loop will be cycled through thirty

times. You can see in line 1036 ('Next g') the end of the
loop. Note that the letter used in the loop (g', in this case)
must be the same in both the FOR and the NEXT
statements. When the computer executes a FOR/NEXT
loop, the controlling variable (the `g') has a value of 1 the
first time through the loop, 2 the second time through, and
so on. Therefore, when `g' is used to control the output of
the BEEP command in line 1032, it means that `g' has a
different value each time through the loop, which creates the
rising and falling tones. The BEEP command (the word
BEEP is under the Z key) is always followed by two
numbers. The first controls the duration of the note (with
.007 the shortest practical note) and the second number
controls the pitch of the note (which must be in the range
–60 to 60). The tone varies as it does because `g', the pitch
variable, is changing as the loop is cycled through.

1040 – After this musical display, the result of the first die
roll is printed on the screen.

1045 – There is a delay of a second.
1050 – The result of the second die roll is printed.
1055 – There is another one second delay.
1 060 – The computer prints a blank line.
1070 – This is the RETURN statement, which terminates

the subroutine and sends the computer back to the line after
the one which called up the subroutine.

Additional Commands
Our final program for this section is based on the second
program, SPECTRUM NUMBER. 1f you have it on

After running through the subroutine, the computer

32
	 33

10 REM Spectrum number
20 LET a=INT (RND*50) +1
30 LET gues4=0
40 INPUT FLASH 1; INK 2;'`t'hat

is your first name? ";b$
45 INK 2: PAPER 6: BORDER 6:

I s
50 PRINT INK 1; PAPER f; "Hei L ^..-b
60 PRINT • "I am th i nk i ng of a

number-
70 PRINT "bettcteers an-e- aand- SO w

hi ch g ta u"
3ü PRINT "have to try and gues
90 LET guess = g uess + 2

100 PRINT '''"This	 gtte^s !?ir To
ber ";guess
110 INPUT "Enter your guess
112 t_.L5
115 PRINT "Your guess, ",;b$;",

was s	 c
120 IF c=a THEN PRINT FLASH 1,"

Welt done, you got it right!":P
RINT FLASH 1; INVERSE I+ "It took
you , ; guess," guesses": STOP
130 IF c>a THEN PRINT "That nur^?

ber is too high"
140 IF c<a THEN PRINT "That n u rt+

ber is too tow"
150 GO TO GO

`„c

Programming the Spectrum in BASIC le

cassette, you can just LOAD it back into your computer,
and make the adaptations.

In this program we'll be examining the following new
words:

—FLASH
—INK
—PAPER
—BORDER
—INVERSE

Modify the program so that it looks like the following,
then return to the book for a discussion on the new material:

Your guess, tim, was 39
,De t L dorre	 q ou clot i t right!

nommonmanAmanammaana

As you can see, this is a much more exciting program than
it was originally. It is amazing what a difference colour can
make to the output of a program. It is worth keeping this in

Programming the Spectrum in BASIC

mind when creating your own programs.
As you've no doubt realised, FLASH and INVERSE

work in a similar way to the BRIGHT we came across in
HIGH ROLL: follow the word with 1 and you turn it on (as
in FLASH 1); follow it with a zero and you turn it off
(INVERSE 0).

I mentioned these words could be used locally or globally.
The same is true for the colour commands INK (which
controls the colour in which you are printing), PAPER (the
background on which you are writing) and BORDER (the
frame around the screen). In line 40, the INK is used locally,
so it only affects the INPUT prompt. In the next line, 45, the
INK is set to red (colour number 2), the PAPER to yellow
(colour 6) and the BORDER also to yellow. The CLS at the
end of the line is needed to make the PAPER colour cover
the whole screen. Without this (as you'll discover if you
leave the CLS out) the computer will simply put a yellow
strip under whatever it happens to be printing.

You might like to add some sound to the program,
perhaps related to the difference between your number and
the computer's number.

I'll now look briefly at several of the other words you'll
use in programming your Spectrum in BASIC. These will
not be treated in as much detail as the earlier ones were.
However, from what you now know, and from what you
should pick up looking at the other programs in this book
(and deducing how the commands work from the context in
which they are used, and the results they produce) you
should have little trouble continuing your self education in
this field.

EDIT — This is used to change the program lines quickly.
Put the line marker [>1 next to the line you wish to change,
and then holding down CAPS SHIFT, press the 1 key, so the
line comes to the bottom of the screen. You can then move
the cursor along the line, using CAPS SHIFT and the
arrowed keys (5 and 8) to get it where you want it, to add
more material (simply by typing it) or remove material with
DELETE.

STEP — This is used in conjunction with FOR/NEXT
when you don't want to progress through the loop in steps of
one (as happened in the HIGH ROLL program). The step
can be a positive number (or a fraction) or a negative
number if you wish to count down. The form is: FOR a = b

34
	

35

Programming the Spectrum in BASIC •
TO c STEP d.

LIST – Gets the listing of a program on the screen,
starting from the lowest line number. You can also enter
LIST n, where the computer will list with line n at the top of
the screen.

TAB – Moves the start of print output across the screen.
It is used in the form: PRINT TAB n;"string".

PRINT AT – Specifies the starting point on the screen of
PRINT output. It is used as PRINT AT x,y;"string" where x
is one less than the number of lines down the screen, and y is
one less than the number of character spaces across the line
(so PRINT AT 0,0 is at the top left-hand corner of the
screen).

PLOT – Places a dot in the position on the high resolution
screen designated. The form is PLOT x,y where PLOT 0,0
puts a point in the bottom left hand corner of the screen.

INKEY$ – Reads the keyboard for a single character
input, and does not need the ENTER key to be used
afterwards. It is used in the form IF INKEY$ _ "N"
THEN ... or LET A$ = INKEY$:IF A$ = "N"
THEN...

DEF EN – For defining functions.
SCREEN$ – Reports the start of a designated character

cell; the parameters are the same as the PRINT AT ones.
VAL – Converts the contents of a string to its numerical

equivalent so VAL A$, where A$ equals "12 + 3*4" will
return 24.

STR$ – This is the opposite of VAL, turning a number
into a string.

LLIST, LPRINT, COPY – These commands control the
printer, with LLIST and LPRINT working the same as LIST
and PRINT, except they address the printer rather than the
TV screen. COPY is used when you want a copy of the
contents of the screen dumped to the printer. COPY was
used to get the `sample runs' of the programs in this book.

s
CHAPTER FOUR

String handling and its use in Maths

As you probably know, the BASIC used on the Spectrum is
not the same in all respects to the BASICs used on other
computers. The different `dialects' of BASIC are sufficiently
close to ensure that once you've learned to program on one
machine you can turn to another one and program it
reasonably well almost immediately. And after an hour or so
of studying the manual, and working out what the
differences are from your `home BASIC', you'll be
programming without problems.

Many aspects of the BASIC on your Spectrum (often
called `Sinclair BASIC') are pretty standard (despite the fact
that, paradoxically, there is as yet no such thing as a
recognised standard for BASIC). The codes used for
numerical and alphabetical characters, as well as several
others, are the ordinary ASCII (American Standard Codes
for Information Interchange) codes (in contrast to the ZX80
and ZX81, which used an original Sinclair system). The
majority of the-programming techniques you'll master on
the Spectrum can be easily transferred to other computers at
your school.

However, there is one part of Sinclair BASIC which is
unique – its string handling. You'll recall from the previous
chapter that any material held within quote marks – such as
"Hello" – is called a string in computer jargon. Now, as I
said, the string handling on your Spectrum is, so far as
non-Sinclair computers are concerned, unique. Rather than
manipulate the eccentricities of other BASIC's LEFT$,
MID$ and RIGHT$, Sinclair BASIC reduces nearly all
string handling to use of brackets and the word TO. Once
you understand it (which can take all of three minutes) you'll
be able to do just about anything you want with strings.

You'll recall that a string variable is a letter (A to Z) with
a dollar sign suffix (as A$ or a$). The words associated with

36
	 37

10 REM USE OF C}-tR$ AND CODE
20 INPUT "ENTER R NUMCER L ETUE

N 1 AND 255 " ; A
30 PRINT '-CHR$ -;A;"

A
^i^ INPUT -NOW 	 A STRING "A
SO PRINT — CODE --;A$;--ODE R$
50 GO TO 20

Here is a short run from it:

= ";CHR$

= ". C

CHR$
CODE
CHR$
CODE
CHR$
CODE
CHR$
CODE

? t3 = L

-test- = 115
107 r = k
-HTES x = r2
gat =

-TIM- - = 84
254 = RETURN
..- tim- = 11£

String handling and its use in Maths
	 •	 •	 String handling and its use in Maths

string handling include LEN (as in LEN A$) which returns
the length of the string (that is, the number of characters,
symbols and spaces it contains) as a number; CODE which
gives the character code of the first element of the string
(PRINT CODE A$, when A$ = "A" gives 65, as does
PRINT CODE "A"); and TO, which we will discuss in a
moment.

Other words we will look at in a moment are VAL and
STR$, but to introduce them at this point would only serve
to confuse you.

CHR$
CHR$ (spoken aloud as `char-dollar' or `character string') is
used to change the CODE (mentioned above) back into a
character. For example, if you typed in (and you can try this
on your Spectrum now) PRINT CHR$ 65, the computer
would print the letter A. If you then typed in PRINT CODE
"A" you'd get, as we pointed out before, 65.

Enter this next program into your computer, and run it a
number of times until you are sure you understand how
CHR$ and CODE work:

CHR$ 34 = ,.
CODE -f ffffff'' = 102

The use of `TO'
The most valuable string-manipulation tool you have on the
Spectrum is called `slicing'. With this, you can extract any
section of a string that you want, add different parts of the
same string together in any order you like, or add sections of
different strings. And all of this can be done with the simple
word TO.

Study the following, and see if you can work out how TO
works:

LET A$ = "ABCDEF"

Then, PRINT A$(1) will give A
PRINT A$(1 TO 3) will give ABC
PRINT A$(2 TO 4) will give BCD
PRINT A$(4) will give D

In other words, a single number after the string in
brackets will return just that element number of the string, as
you can see by looking at A$(1) and A$(5) above. There are
two variations on this. Whereas PRINT A$(1 TO 5) will
produce ABCDE, as you'd expect, if you want all of the
string from a specific point, you do not have to mention the
final number (5 in this case). In other words, PRINT A$ (1
TO) will produce exactly the same result as PRINT A$(1 TO
5). Further, if you want all of the string from the beginning to
a specific point, all you need to do is mention the final
number. Therefore, PRINT A$(TO 3) will return ABC.
(The TO, by the way, comes from the F key; it is not typed
in full.)

LEN
The next program will select elements at random from a
string you select. Notice, in line 40, the reference to LEN,
the length of the string. Enter the program, and run it for a
while, putting in any string you like, such as your name:

10 REM STRI# G HANaL
TRINC •• ; A20 INPUT -ENTER i

38
	

39

String handling and its use in Maths 4)
30 PRINT -YOUR STR ING IS -;A$40 PRINT — LEN R$ = — ;LEN tR$50 PRINT — R$(11 = —;R$(1)60 PRINT — R$(2 TO) = —TO)
80 LET B =INT àRND* (LEN AS) i-1)90 LET C=INT (RNOŸ (LEi-à AS) +1)100 IF C>=8 THEN G O TO 80110 PRINT ^°R$ (_, f ^:.; • TO ";8;-) `^	 B _

120 GO TO 80

Here are parts of two runs of the program:

YOUR STRING IS OXFORC *C IRC`t5
LEN RS = 13

R$(1) = 0
R$(2 TO) = '-ti—rORff*L-IAL•U'SR$(2 TO 3) = XF
R$(6 TO 10) = D*CIR
R$(11 TO 12) = CU
R$(8 TO 12) = CIRCUR $ (2 TO 12) = kFORE} *C.IRe_:U
A $ (S TO 8) = RC*C.
R$ (9 TO 12) = IRCUR$ (1 TO 5) = O X FcTRL?eR$ (1 TO 6) = OXF O R D
±R $ (r TO 11) = *CIRC
R $ (10 TO 11.) = RC
^R$ (9 T O 13) = IRCUSR$ (2 TO 12) = XFZRCt*?=IRCUR$ (5 T O :11) = RD*CIRC:$	 TO 5) = OR

YOUR STRING IS CL IVE *S INCLER IR
LEN R$ 	 14

•	 String handling and its use in Maths

A string can be chopped up and added to other parts of
the same string, or to parts of other strings. Adding strings is
known as concatenation. (You cannot, by the way, subtract
strings from each other.)

The next program selects parts of a string you enter and
concatenates them. The little section in lines 45, 46 and 47,
gives another example of how easily strings can be manipu-
lated. Here, the string is printed back to front, as you can
see in the sample run which follows the program listing. To
stop this program you will need to press the BREAK key.

10 REM 5TRING MANIPULATION
20 INPUT "ENTER YOUR STRING

A$
30 PRINT "YOUR STRING IS —;R$
40 LET L=LEN R$
45 FOR G =L TO 1 STEP —1
48 PRINT R$ àL 3 ;
47 NEXT G
50 LET B =INT àRNDi-L? i•1
50 LET C =INT (RN0*L) -)-1
70 IF B=C THEN GO TO 60
SO PRINT '8 — " —;C
90 IF BC THEN PRINT RS(TO C•)

±R$ (B TO)
100 IF B <C THEN PRINT R$(TO B;3

4-?R$ tC TO)
110 G O TO 50

YOUR STRING IS CLIVE. < SINC.LAIR
RIlRLC•NIS < >EVILC
14 3
CLIP
8 13
CLIVE<>SIIR

R$(1) _ C

) = L IVE*SINe=-LrRIR
12) = IVEfS Ii.1i•LA
8) = IVE*SI
14) = S.INC•LR.IR
14) = N C• L R I R
9) =
14) = E*SINCLRIR
4) = LIV
11) = .IVE:fSINGL
14) = VE*SIP.C•LAIR
8) = U E ?E S I
7) «.^ UE*S
1 ^-)_ = Iht C. L aIR-9) = E*'SIN
12) = z•L IVE *'S INC:LtR
13) = INCLRI

9 10
CL IVE c : :}INCLRI€t

CL IS INC' L6R IR

11 9
CL IVE < > S I åSl L A IR

11 .9-
t.:,L IVLtR IR

p 1	 _
C < >SIN^:LPiIR

VAL
Another very useful string-handling word in BASIC is VAL.

TO
TO
TO
TO
TO
Tr)
TO
T r?
TO
TO
Tn
TO
TO
TO
TO
T O

40
	

41

String handling and its use in Maths	 •	 String handling and its use in Maths

This returns the numerical equivalent of the string. This is	 = " f	 t	 TO
how it works:

	 C)
9O GO TO 50

LET A$ = "23 + 3"
_PRINT A$ will give you, as you'd expect, 23 + 3
PRINT VAL A$ returns 26

You can use VAL to produce a simple calculator on the
Spectrum, which will work out just about anything to tell it
to do:

10 REH STRINGS AS NUMBERS
20 INPUT "ENTER YOUR CALCULATI

ON "_A$
30 - PRINT 'R$.; ., =
40 GO TO 20

Here's the program in action:

33+E-19 = 20
2fi5 -r = 25
LN 7-50R 12 = -1.5151915
(79-4t2)-COS 3 = 63.989992
(45rr 7+5GN 7)1'34.759 = 1.9857502E+30

The opposite of VAL is STR$, which turns a number into
a string. That is, telling the computer to set A$ equal to
STR$ 123 will turn A$ into "123".

The whole point of our discussions to date in this chapter
is to lead up to the extraordinary usefulness of string
manipulation for number work. Because parts of strings can
be easily extracted in a way in which parts of numbers
cannot be, and because numbers and strings can be inter-
changed using STR$ and VAL, we have a powerful tool with
which to handle numbers.

To introduce this, run the following program:

10 REM NUMBERS AS STRING
20 INPUT "ENTER YOUR NUMBER
25 PRINT "YOUR NUMBER IS "; A
30 LET A$=STR$ A
40 LET L=LEN R$
50 LET B=INT (RND+L) +1
60 LET C=INT (RND*L) +1
70 IF B r =C THEN GO TO 50
80 PRINT .. 'AEG t "; B; " TO "; Cl ")

As you can tell from this sample run, much of the output is
fairly useless:

YOUR NUMBER IS 12.345

R$ i2 TO 4) = 2.3

R$ (2 TO 6) = 2.345

R$ t3 TO 4) = .3
R$ t2 TO 5) = 2.34

R$ t3 TO 4) = .3

R$ (5 TO 6) = 45

A$ (1 TO 2) = 12

R$ (1 TO 5) = 12.34

R$ (1 TO 3) = 12.

R$ ta!-	 TO 5) = 34

However, look down the output till you come to A$(1 TO
2). You'll see here this has returned 12, the number stripped
of the figures which follow the decimal point. Just below it is
A$(1 TO 5). Here, 12.34 has been returned, the number
stripped of the third digit after the decimal point. If we could
control the stripping which takes place, we will indeed have
a very useful device for manipulating numbers.

Correction to N Significant Figures
The rest of this chapter will seek to prove the accuracy of
that claim. Our first program, as you can see, corrects it to
the number of significant figures you specify:

10 REM TO CORRECT ANY POSITIVE
NUMBER 10E7

TO N SIGNIFICANT FIGURES
20 INPUT "ENTER YOUR NUMBER ",

X$25 INPUT "AND HOW MANY SIGNIFI
CANT" ,"FIGURES DO YOU WANT ";(X$

CORRECTED TO? ";N
30 LET Y=UAL X$* t 30t (LEN X$-1)
40 PRINT 'X$;" to ":N.;" sigr?i F

icarit" f "fi9Ute= is ";INT (UAL ST

"	 R$

R

42
	 43

String handling and its use in Maths

R$ Y='1Ot(LEN STR$ Y-N)+.5E*(lottLEN STR$ Y-N) ? :r t10î- (LEN X$_-1)50 GO TO 20

•	 String handling and its use in Maths

.054672 = 0547 to 3
significant figures

54537 to 2
fi g ures is
.054572 to
figures is
1/574 to
fi g ures i_

significant
55000

3 significant
.0647
significant
0

Your number is 674/45
Y = 1497777.8

I	 correct it to 7
significant figures

= 14^75
^^ iF ^^ s S- Y_ ^^_	 r r

574/45 to 3 significant
figures is 10
2374:e45 to 7 significant
figures is 14.975

The next version of the program is broken down to show
what is happening. (For negative numbers, by the way, enter
the digits only.) Line 30 turns the number into a whole
number, in case the original number is a decimal. Line 70
gives the actual significant digits. Line 90 produces the
corrected whole number, and line 110 gives the answer
required:

5 REM Correct to N sig.
figures

10 INPUT `P- Lease enter y our nuFaber ".X$
20 PRINT —Your number is „;x$
30 LET Y=VRL X$* t10t (LEN X$--1)
40 PRINT —Y = -;Y
50 INPUT "TG how many s i gn i f i cant",-figures?	 ' ;{N1
60 PRINT	 ù,iLL correct it to - ;N. - si g nificant figures..

LET ET Z=INT (<?FàL 5TR$ Y:'10-l` (L
EN STR$ 4{-N) +. 5)

80 PRINT TRE 6;-7_ = ; £
SO LET W=.7:* (1&t (LEN STR$ Y-N))

100 PRINT TRS 10;-Y - -;Y110 PRINT 'XS;- = .. . t-l *VAL ?($-'Y:
" to "'N , •• _iCif',i iicant figures-
120 GL TO 10

Your number is .054572
Y = 54672	

^^ will correct=_it to si g nificant figures
i = 547

Y -- ^'å ^ 7 •S^

574/45 = 14.s75 to 7
si gnificant figures

Conversion to Standard Form
Finally, here is a program to convert numbers to standard
form:

5 REM CONVERSION TO
STANDARD FOR

10 INPUT -Enter your number .
X$

15 IF X$=	 OR X$="s,. THEN ST

Op 20 PRINT 'X*; " = r
3O LET `r'=URL X$*101= tLEN ?($ - 1?
40 IF iAL X$>=10 THEN PRINT Vi=a

L X$s1O • ' (LEN X$-l) ; ".E+" i LEN X$-1
50 IF VRL X$<10 THEN PRINT Y/1

Ot tLEN STR$ Y-1? ; ..E.. _LEN 5TR '-
LEN X$

60 GO TO 1a

.00000345 = 3.45E-5

.0345 = 3.45E-2

n 345 = 3s45E-1
345 = 3.45E+2
34500L000L4'cSL-^0ili0 = -5.45E+15

44
	

45

CHAPTER FIVE

Using the Spectrum for More Advanced
Mathematics

The Spectrum seems almost purpose-built for maths work.
Its wide range of mathematical functions, and the ease with
which it can be programmed, invite students (and teachers)
to create programs to solve particular problems, or
demonstrate certain mathematical processes.

The Spectrum is ideal for situations where the basic
working of a problem remains the same over a period of
time, but the data which must be manipulated within that
working procedures change. You should also find the
computer excellent for producing visual demonstrations of
maths in action.

In this chapter of the book, I'll look at a number of
programs which I've included primarily to give you an idea
of the range of mathematical processes which can be
demonstrated on the Spectrum. Some of them may also be
directly applicable to a course which you are taking.

From entering and running these programs, you should
get an idea of just how flexible the Spectrum can be in this
sort of work. In addition, you'll gain a number of ideas
concerning effective visual displays which you can
incorporate into the programs you write for maths and other
subjects.

Number Series
The link between successive numbers in a series is often
simple to state, but to calculate the series can be quite a
time-consuming job, even if the mathematics involved in
generating each number in the series is not very demanding.
The Spectrum laps up work of this type, as you'll see from
the following five programs.

The first one prints the series 1, 1*2, 2*3, 6*7 ... and
quickly approaches the Spectrum's upper numerical limit

Usiothe Spectrum for More Advanced Mathematics

(+ 7 * 10 " 38).
Here is the listing:

10 REM NUMBERSERIES
(1, 1*2,2*3,6* etc

20 LET R=1
30 PRINT f
40 LET R=P* tR+11
50 GO TO 30

And this is what it looks like when running:

2
6
42
1806
32534421. v55oea^E+ 1 3
1.1342371E+26

Mystery Series
I'll leave you to work out the rule used for our second series.

Here is the output of the program:

1
5
21.
33
445
2676
18739
14ci^z0
1349289
1.349 290Z
1.4842191E+8
1.7810629E+9
2.3153818E+10
3.2415346E+11
4.8623018E+12
7 . 7?gSi2 ^E+i.'3
1.3225461E+15
2.380583E+16
4.5231077E+17
9.0452153E+18

How did you get on? Here is the program listing:

2.s^.s Lffr R=1: PR it=3T R
30 FOR N=1 TO 20
40 LET R=N+ tPz-:1 3
50 PRINT å1
60 NEXT EXT N

47
46

Using the Spectrum for More Advancelgathematics

Fibonnaci Numbers
Fibonnaci is the patron saint of rabbits. His name graces the
number series produced by this brief program:

10 PRINT "FIBONNROI NUMBERS"28 LET M=0
30 LET N=1
40 LET P=H+N
50 PRINT P
60 LET M=N
70 LET N=P
80 GO TO 40

The start of the Fibonnaci series:

Using* Spectrum for More Advanced Mathematics

Sum of Series
We now look at two programs to produce the sum of a

series. The first one produces the sum of the series 1/X +
1/X12 + 1/X T 31/X N:

10 REM SUM OF SERIES
1/X + 1/Xt2 +15 INPUT -Please enter value f
or X -;X

20 LET 5=0
30 FOR N=1 TO 40
40 LET 5=5+1,-(Xtil:k
50 PRINT S.
60 NEXT N

FIBONNRCT NUMBERS	 Here is the series for X = 1.7:
a_

0.58823529	 0 .cta,tss6os
3	 1.1377977	 1.257528
5	 1.3279577	 1.36356g
8	 1.337E7	 1.4050923
13	 1.4165249	 1.4214852
21	 1.4244031	 1.4261195
3$- 1.4271291	 1.427723
55	 1.4280724-	 1.4282779
89	 1.4283987	 1.4254698
144	 1.4255117	 1.4255363
233	 1.4285508	 1.4255593
377	 1.4285643	 1.4255672
610	 1.428569	 1.42557
987	 1.4285706	 1.4255709
1597	 1.4255711	 1.4285713
2584	 1.4285-13	 1.4285714
4181	 1.4285714	 1.4255714
6765	 1.428E714	 1.4255714
10946	 1.4265714	 1.4255714
17711	 1.4285714	 1.4255714
28657
46368
75025	 The second sum of series program sums the series 1 is 2 +
121393	 2	 2 + 3	 2N	 2:
195418
31781151422c1
832040
1346269
2178309
3524578
570-=887
9227465
14930352
24157517

10 REM SUM OF SERIES
lt2 + 2t2 + 3t2...Nt2

15 INPUT	 -Please -ent-er 	vatue
r N	 N
20 LET X=0
30 FOR M=I TO N
40 LET X=X+iMt2)
50 PRINT X
60 NEXT VI

39068159
63245986	 Here it is in action for N = 16:
1.0233416E+8
1.6558014E+8
2.679143E+8
4.3349444E+8 14
7.0140873E+8 30

55

48
	

49

THE SOURRE ROOT OF 2 -

Using the Spectrum for More Advanced [L1iematics

91
140
204-
205
385
505
550
5 '.9
1015
1240
1495

Uo the Spectrum for More Advanced Mathematics

90 NEXT N
100 PRINT RT 20;28;-etc.-

1
R=1 +

2 + 1
2 + ß.

? + 1

Square Roots and Sir Isaac
Initially, we'll look at three programs related to deducing
square roots. The first one converges on the square root of
two, using continued fractions, and the second program
demonstrates the process. The third program, based on the
first, is designed to determine the square root of N by
continued fractions.

Give R some arbitrary value when running this program:

• 	 + 1
2 + 1

2 + 1
2 + 1

2 + 1
2 + 1

2 + etc.
20 INPUT "E NTER R NUMBER -;R
30 PRINT "THE 5OURRE ROOT OF 2

40 PRINT TAS 23;R
50 LET R = 1+:1/ t 1-rR?
50 GO T O 40

10000
1.0001
1.499975
1.400004
1.416666
s.à-13î932
1.4142$57
1.4142012
1.4142157
1.4142132
1.4142135
2.4 142135
1. 4-14?136
1.4142135

This program, as you can see from the sample run which
follows it, shows the process:

5 REM CONTINUED FRRt_-TILNS
10 REM LET F--1=SOL=`RRE ROOT OF
20 REM R1-2-1= fRf13 tR -1a
30 REM THUS fR+13 tR-13 =1
4-0 REM SO R - 1 =1.,tR+1?
50 REM OR R =1+ß../ t 1+R 7
50 PRINT RT 1.@;"R=1 +`.
70 FOR N=0 TO 18 STEP 2
80 PRINT	 N+8-£ "1" _ RT- N*1 , N

+5 , •. 	 . . RT N+2e N+S. ,. 2 +..

Square Roots by Continued Fractions
Our third program converges towards the square root of N
using continued fractions. After the listing, you can see it in
action working towards the square root of 4 (sample run
one) and 9 (the second sample run):

4 REM	 SOURRE ROOT OF N
5 RENT BY CONTINUED FRRCT IONS

10 INPUT "ENTER N "} N
20 LET R=1
30 LET R=1+ tN-1) = f 1+R?
40 PRINT R
50 GO TO 30

2.5
1.8571429
2.05
1.9835055
2.0054945
1.9981718
2.02+0ä09s
1.9997958 999495tî
2.0000577
1.9999?74
2.0000075
1.99999-5 99999-5
2.0000008
1. 9999997
2.0000001

2

50
	

51

Using the Spectrum for More Advanced Mat1^,7atics

5
e ^-3 3^^3>>3

3.42.81818183.09523612.95346643.02352942.9883041"- . 00586E 12.99707173.00146522.'74992E773.0003662
2.999o1E9
3 .00009 152.99995423.00002292.99998863.00000572.9999971
2.999999,=3.00000 P 4 00000P42.9999,963.000000133

Square Roots by Newton's Formula
In case you were wondering why Sir Isaac Newton gained a
mention in our crossheading, here is the answer. Our next
program is designed to find square roots by Newton's
formula. After entering the number (N) you enter a guess
(G) of the square root:

10 REM TO FIND SQUARE ROOT BY
NELTON' 5 FORMULR

20 INPUT "ENTER THE NUMBER -;N
25 INPUT "YOUR NUMBER IS -;(N) (N)

.-ENTER YOUR GUESS OF THE",-SOUR
RE ROOT "LG

30 LET r. = t G q-N /G)
40 PRINT 5,5t250 IF RB5 ES-G)<5/1000000 THEN

STOP
60 LET G=5
7n GU TO 30

Here is the program in action looking for the square root
of 1000, with an entered guess of 17:

37.91176532.144401

	

31.627009
	 3- 033 . 26251000.2677

147‘7-301

100031.622777

	

31.622 77=	 1000

Usi,ee Spectrum for More Advanced Mathematics

This time, I entered a guess of 1, to see what difference
this would make:

500 .5
251.249 249 2`̂̀-+050L-'+t . 2tia

63126.06127.81456 16285 . à.7567.725327 456. 7241. 245426 1701 .185232.745269 1072.252731.642016 1001=217231.622782 1000.0004151.622777 1000

It is often instructive, once you've got a program up and
running correctly, to play around with the output of the
program in an attempt to make it clear to the computer user
what is going on. Working from the program listed above, I
produced this following version of it, which gives a clear
printout to show what is going on:

10 PRINT -SQUARE ROOT BYNEWTON'S FORMULA-
20 INPUT -ENTER THE NUMBER -;N25 INPUT " Y OUR NUMBER 15 `; f N i^ "ENTER YOUR GUESS OF THE" , "SOUA

RE ROOT -;G
27 PRINT "Th e z?i.uotxer .i .s "; N28 PRINT	 ..y•OUS- guess.- trk a ç	 ; G:

PRINT
30 LET S = t G1N.'G? ,2
40 PRINT 5 f S t 50 IF RSS CS -Si 45 <<10tae+izo ►^^ THENSTOP
80 LET G=5
70 GO TO 30

Here is the output of one run. As you can see, it is
instantly clear from the printout what is happening. As well,
there is proper record of the values entered for N and G (a
final improvement would be to have a line of the type `The
square root of ... is ...'):

SOLg c?RE ROOT B'r'
NEWTON'S FORMULR
The number

Your guess

16.505
5.2824727
4.2009649
2.2182411
1.3521351

i s

was

0 .9694
.03
272.41502
65.599355
17.648106
4. 9205936
1.7745839

52 53

Using the Spectrum for More Advanced MMmatics

1.0374263 037à-2630.99556630.994686270.9Q468588

Solving Equations by Newton's Method
The next section looks at programs which solve general
equations using Newton's method. I never fail to be
impressed by watching these programs in action, with the
computer converging rapidly on the solution.

The first routine, written by Jeremy Ruston, expects the
equation you want solved for X to be entered when
prompted by line 10. Then, in reply to the prompt from line
40, you enter a starting position for the computer to work
from. This should be (as in the square root examples given
earlier) either an answer somewhere near what you believe
the correct answer to be, or — if there is more than one
correct answer — a number near the answer you are seeking.
To try it out, enter X*X — 5 (to find the square root of five)
or X T 3 — 27.6 (to find the cube root of 27.6):

5 REM Newton ' s method for
solving equations

10 REM >Ey Jeremy Ruston
20 INPUT "Enter a funct i on i n

terms of X ";F$
30 PRINT F$
40 INPUT Enter a starting poi

n t -;5
50 PRINT 5
70 INPUT "Enter maximum error

";ERR
90 PRINT ERR

100 PRINT AT 1.0 ; 10; 5
110 LET X=5	 _
120 IF A8S (VAL F$) fi ERR THEN ST

OP
1 317 LET T =VAL F$140 LET X=X + 0 = 00001
150 LET 5= { (VAL F$) -T) 1r0.00001
160 LET 5=S -T./ 6
170 GO TO 100

The next version of this program is more flexible, allowing
you to enter both sides of the equation, again with X as the
unknown (note that the acceptable error — at the end of line
80 — is so small that some equations will not produce
acceptable solutions; you may wish to increase this
acceptable error to .0001):

UsinS Spectrum for More Advanced Mathematics

5 REM SOLVING EQUATIONS USING
NEUTON ' 5 FORMULA

10 INPUT "ENTER LEFT HAND SIDE
0F" , "EQUATION ";L$

20 INPUT -NOW PLEASE ENTER THERIGHT HAND SIDE OF YOUR EOUATION -;R$
30 PRINT AT 1.,1.0; L$: "=";R$ R$i40 INPUT "ENTER R ' STARTING VA

LUE' ' ;
4-S PRINT AT 5,11; ". "; AT 6,1 E: "
50 PRINT AT 6,16; 5
60 LET X=5
70 LET F =VAL L$-UAL R$
50 IF ABS F ; .000001 THEN STOP90 LET X=X+1

100 LET 5=S-Fr' {VAL L$ -VAL R$-F)110 GO TO 5Q

Here are three results of running the program:

X •t2-4 *X=X •t 6-44-

▪ . X=1.8494857

}t•A3=100

• . X =4.64155543

Xt2=1O0

. • . }: = 1t7 . aoki01r}c

As I mentioned a little earlier, it is often a good idea to
rewrite a program once you have it up and running to make
the screen display as attractive and informative as possible.
Another way of modifying a program is to rewrite it to dump
to the printer, rather than the screen. To demonstrate this,
I'll show you one way the above program could be rewritten
to produce an informative output direct to the printer:

1.07525330.991152260.959400780.9894-

54
	

55

Using the Spectrum for More Advanced l.ematics
5 REM S O L V ING E1C.tATIE1NS USIN GNEWTON'S FORMULA8 REM al VERSION FOR PRINTER10 INPUT "ENTER LEFT HANL? SIDEOF" "EOi.►ATIUN -;L$

20 INPUT "NOW PLEASE ENTER THE
RIGHT HAND SIDE OF YOUR EOUATION -;R$
30 LPRINT L$; "="_ R$
s40 INPUT ".ENTER A 'STARTING VA

^ LtE { ".5
LPRINT : LPRINT - Starting yalue =

50 LPRtNT = LPRINT S
60 LET X=S
70 LET F =;a AL L$-VAL R$
80 IF ABS F<.0001 THEN GO TO

20
90 LET X =X -k.i

100 LET S=S-Ff° tV p=sL L$ -VAL R$-F)110 GO TO 50
120 LPRINT INVERSE 1;-»-; INVERSE 0; ., X = -;S

Here is the program in action, looking for the fifth root of
1000:

_Xt5=1000
Starti n g value = 4
_t

3.9885769
3.984028
3<9822331
3.9615275
3.9812505
3.Q6ii4i8
3.9810992
3.9610825
3.9810759
3.9810734
3.9610724
3.9810-2
;:'̂ . 98 10718
3.9810717
ZO X = 3. 9810717

Using `Spectrum for More Advanced Mathematics

And again, solving a rather odd equation (to show it takes
a lot to faze our Spectrum):

è2*PI}}ft t2 =LN X
Startin g value = I

1
2.30^c8338
3.881935
4.9413868
4.9694722
4.9524762
4. 91842559
4.9638055
Me X = 4.9C38^.̂ 5y

Here it is solving another odd equation, twice, with widely
differing starting values (which shows that, in some cases,
the starting value can be just about anything):

17*?{-005 XrrPI=50R X

Startin g value = .02
.02
.027349178
.028491787
.028652158
.028674357
^?C = .028574357
17 yeX-005 X/PI=SOR X
Startin g value_ = 300
100
0.255304
.042804712
.030347919
.028911325
.028710073

56
	

57

Using the Spectrum for More Advanced Mematics

.028682355
X = .028582355

Finding Factors
Moving away from Sir Isaac, we'll now examine a number of
different mathematical applications of the Spectrum. The
first one, written by David Perry, finds factors. The program
will prompt you, so you'll have no trouble using it:

10 BORDER 1: PAPER 1: INK 7: E
RIGHT 5: CLS

20 PRINT AT 0,7; PAPER 2; 	 FR
CTORISING

30 INPUT ""Product ? - - P: PRINT
AT 2."2; PAPER 0;" Product:-;p;-

40 INPUT "'Sum? "; s : PRINT AT 4

	

4-: PAPER 0;"	 5Um : "; s ; '"
50 FOR a=1 TO AE5 (P t
F,:,: ^-_.:	 -_q^	 (p	 T^ ï STEP -1
70 IF (a*b) =A85 f	'(p) THEN GO 51.E

: 120
60 NEXT b
90 NEXT a

100 PRINT : PRINT "PRESS t
> TO RUN AGAIN""
110 PAUSE 0: PAUSE 0: RUN
120 IF is*b7 =P AND (a+b) =s THEN
PRINT "° Factors: +-;a;-,+-;b
130 IF ((-a)+b)=s AND £(--a)*b)=

p THEN PRINT " Factors: --;a;-,+
. b
140 IF ((-b) +a) =s AND (i -b)) *a) =

p THEN PRINT " Factors: +";a-,-
;b150 IF ((-a) + (- b)) =å ANt> ((-a)

(-b)) =p THEN PRINT " Factors:
"	 ; b

160 PRINT a , b
170 RETURN

Calculating N! (factorial)
The next program calculates N! (factorial). The listing is
followed by a few sample runs:

10 REM TO PRINT N! (factorial?
15 INPUT "Enter value for n '";

20 PRINT N;" factorial =-
30 LET X=1
40 FOR P=1 TO N
50 LET X=X*P
60 NEXT P
70 PRINT X

Usiteie Spectrum for More Advanced Mathematics

S factorial =
120
12 factorial =
4.790016E+8

23 factorial =
2.5852017E+22

32 factorial
2.6313084E+35

Related to the last program, this one prints factorials from
1 to M. A sample run follows the listing:

10 REM TO PRINT FACTORIALS
FROM 1 TO M

15 INPUT "Please enter M
20 FOR N=1 TO H
30 LET X=1
4-0 FOR P=1 TO N
50 LET X =X *P
60 NEXT P
70 PRINT N;- factorial
60 NEXT n

1 factorial = 1
2 factorial = 2
3 factorial = 6
4 factorial = 24.
5 factorial = 120
6 factorial = 720

factorial = 5040
6 factorial = 40320
9 factorial = 362880
10 factorial = 3628800
11 factorial = 3a16800
12 factorial = 4..790016E+8
13 factorial = 6.2270208E+9
14 factorial = 8.7178291E+10
15 fact orial = 1.3076744E+12
16 factorial = 2.092279E+13
17 factoria l = 3.5568743E+14
15 factorial = 6.4023737E+15
19 factorial = 1.216451E+17
20 factorial = 2.332902E+18
21 factorial = 5.1090942E+1922 factorial _ 1.1240007E+21

Solving Quadratic Equations
The resourceful Spectrum can solve quadratic equations
more quickly than you can:

10 REM PROGRAM TO SOLVE
QUADRATIC EOUATIONS

20 INPUT -ENTER A -;A A

^t

"

= ".„;X

GQ 59

Using the Spectrum for More Advanced Matikatics

30 INPUT "ENTER 8- -;B
35 INPUT -ENTER C -;C
37 PRINT "IF R = -;R;", 5 = -;

5.- and-,-C =
40 LET X1=k-6 -1-50R (B*B-$*Ra-1:n)

s(2*R)
50 LET X2= (--50R tB*5-4*R*C))

/(2*R)
60 PRINT '"X = ";Xl- or -;X2

IF R = 1, 6 = 9 and
C = 2
X = -0. 0 2799813 or -8.7720019

Triangular Numbers
The next program generates Triangular numbers from one

to 100 as you can see from the output below the program
listing:

10 PRINT "TRIRNGULAR NUMBERS-
20 FOR N=1 TO 100
30 PRINT N iN÷1) /2;
4n NEXT N

TRIRNGULRR NUMBERS
I 3 5 10 15 21 28 35 4-5 55_ 65 78
91 105 120 13S 153.171 191a 21a

231 253 275 300 325 51 378 405
435 465 495 528 551 595 530 555
703 741 780 520 651 903 945 990
1035 1051 1128 1176 1225 3a75 13
26 1378 1431 1485 1540. 1595 . 1653
1711 1770 1530 1891 1953 2015 2

080 214F. 2 0 11 227F; 2:=45 24 1 5 fAS;P-.
5 2556 26282701 275 2650
3803 3081 3180 3240 3321 3403 34
35 3570 3555 3741 3628 3915 4005
4095 4155 4278 4371 4455 4550 4-

656 4753 4851 4950 5050

If you prefer your output more neatly arranged, this
second version may be of interest:

REM RLTERNRT IVE VERSION
FOR OUTPUT IN COLUMNS

10 PRINT "TR IRNGULR t-4Ut-10ER5"
20 l'OR N=1 TO 21

	

30 PRINT N .; TRE	 N* .U44-1	 TR5-

	

16; N+23 * (N÷24)	 TFis	 KT g-4-5
TR5 20; N-i-57j tN+5aY

4-0 NEXT N

Usinfle Spectrum for More Advanced Mathematics

Ti,-;: lf7a.ii;LiLi---irf NUMBERS1 1 300 1081 03-4A
2 3 32 1128 2415

6 351 1176 2455
4 10 378 1205 2556
5 15 406 1275 2628
6 21 435 1326 2701
7 28 465 1378 0775
FE 35 496 1431 05r-7‘n
ci
10
11

45
55
61-;

528
561
s:.---:

1485
1540
Ise,

2025
3003
30s:11-, -7v. 52 155 31813

14
Q1
105

666
703

1711
1770

3240
-4 c-4.2115 J2 0 741 1 :330 3,4-ii:A16 136 730 1891 34_5817 153 820 195 1 -1.7:,-70

Pascal's Triangle
Pascal's triangle can be printed by this program, in which
line 30 gives the first number in each row, line 50 gives the
rest of the numbers in the row, and line 60 is the 'recurrence'
that must be found:

REM PascaL's Trianole
INPUT -How many rows? f(8)"

15 IF 11 >8 THEN LET 11 =820 FOR N=0 TO M30 LET 0=1
40 PRINT AT 2*N,(1 5 -2*N);0SO FOR R=1 TO N.
60 LET C=C iiriN-R4-1)/R70 PRINT RT N*2,(15-N*24-R*4);C50 NEXT R
90 NEXT N

As you can see from these sample runs, the output of this
program is limited by the screen width of the Spectrum
display (you may wish to modify the program so it generates
the numbers, but produces them in another form, so they
can be 'manually' converted into a triangular display):

;LI	 1

5
10

11

I 1
3

60
	

61

1
1 1

1	 2 1.

1 3 3 1

1 4-	 5 4 1

1 5 10 10 5 1
1 ra 15	 20 15 6

1 7 21 35 35 21 7

1 8 28 56	 7+C3 55 28

Conversion Base 10 to Binary
This program is a demonstration of the conversion of base
numbers into binary. Read the remainders from bottom
top:

10 INPUT "Enter (oui- number in
base 10 -;N
20 PRINT 2 into :N;" goes

INT,{
y (N /2) ; TRS 25; "Rem .: "; N°2*IN

T (N/2)
30 LET N=INT (N/2)
4-0 IF N>=1 THEN GO TO 20

10
to

Using the Spectrum for More Advanced Mat.atics Usine Spectrum for More Advanced Mathematics

Our next listing converts base ten numbers into
binary equivalents:

5 REN BASE 10 INTO BINARY
10 INPUT "ENTER YOUR BASE 10 NUMBER -;N
20 PRINT N;" (base 10) o.
30 FOR ÿ_0 TO INT (LN f1 :rL.N
st-iĉ PRINT AT 3,f 28-°0 N-a:F-INT
5O LET N=INT (N.{2)
60 NEXT J

Here is the program doing its work:

123	 (base	 10) = ";.1 1 1021

3	 (base	 10)	 = 11

4-52	 (base	 1("c^) = 1 1 1000100

1234	 (base	 10) = 10011010010

255	 (base	 10) = 11111111

their

y)

This is the program in action:

2 into
2 into-
2 into
2 intoa into

2 into
into
into

2 into
2 into

into
into
into
into
into
into
into

16 goes 8
r, goes 4
4 goes 2
i^ g oes 1
1 goes 0

19 rlOeS 9
^ goes 4
4 goes 2
2 goes 1
1 goes 0

94. goes 4.7
47 goes 23
23 goes 11
11 g oes 5
5 goes 2
2 goes 1
1 goes 0

Rem.: 0
Rem.: 0
Rem.: 0
Rem.: 0
Rem.: i.

Rem.: 1
Rem.: I
Rem.: 0
Rem.: 0
Rem.: I

Rem.: 0
Rem.: 1
Rem.: 1
Rem.: 1
Rem.: 1
Rem.: 0
Rem.: 1

Round to Nearest Whole Number
This short routine, as you can see from the sample run which
follows the listing, rounds numbers to the nearest whole
number:

10 REM TO ROUND TO NEAREST
WHOLE NUMBER

20 INP UT "Ftease- eant-e-t- g.oEEr`- nu
ü, b e f ' k

30 PRINT X;" r our'eded to the ne
arest-, -whole number is ' ; INT (X
+.50001)

40 PRINT
50 GO TO 20

12.3 rounded to the nearest
whole number is 12
12.76 rounded to t h e nearest
whole number is 13
0.6 rounded to the nearest
whole number is 1

62 63

Using the Spectrum for More Advanced MwSatics	 Usi1rie Spectrum for More Advanced Mathematics

130 LET C=C +Y
140 G3 TO 90
150 PRINT c
170 NEXT 6

The next program does much the same, this time using the
Sieve of Eratosthenes, in a way which makes dramatic use of
the visual output of the computer. It first prints up the
numbers one to 100 in this form:

Express to N Decimal Places
This routine allows you to express a number to N decimal

1

11 12
3
13 14-

5

15

6
18

7

17
8
18

a

19
10
20

places: 21 22 23 24- 25 26 27 28 29 30
^ RE M TO EXPRESS Fi NUMBER TO

N DE='1MF3L FLRC-ES ^ 1 ?2 33 34- 35 36 37 38 39 4.0
10 INPUT "ENTER YOUR NUMBER 'ti 41 42 43 4-4- 45 46 47 48 4.9 50
20 INPUT "TO HOW MRNY DECIMAL

FLHL•ES " . N 51 52 53 54 55 56 57 58 59 60
30 PRINT	 X:"	 ts?	 ".;N;"	 dîziRl3è."

"piåce is)	 is	 "; 61 62 63 64- 65 66 67 68 6g 70
40 PRINT TNT	 i X *10-F N t, 5?	 10T N 71 72_ 73 74 75 76 77 f L78 72 80

24.,669751	 t o 	 i+-	 decstr=at 81 82 83 84- 85 68 67 88 89 90
placets)	 is 24.68 91 22 9'3 94- 95 9t 97 98 29 100

.000:å4. t0 4 de 	 t.
p lace is1 is =0003

Then, it works through them one by one, making each
number flash briefly as it is checked to see if it is prime:

12399.99 to 0 dEcirr,a l
P lace (ti) is 124-00

1 2 3

11	 13
23

5	 7
17	 1c1

29

Generating Prime Numbers
This program will generate as many prime numbers as you
want:

5 REM PRIME tdUMEERS
10 LET X=1: : LET Y=2: LET p=a
20 INPUT - HOW t-iRNY PRIME NUMBE

R5 00-,-YOU i tRNT ? • ,x ^3	
tt

40 PRINT ''T i = fi r :^ t ' ; 3-t	 p rim
e numbers: — 1,2,3;

50 FOR 5=1 TO R-3
70 LET t?? =O tY
S =3 LET O=Y +X
90 LET E=INT tDFG?

100 LET F=L?-E *t
110 IF NOT F THEN GO TO ,a
120 1F C > =5 THEN GO TO 150

31	 ti .

41	 43	 4-7

OA 	 5r^ 5^ 5^53

51 62 63 54 65 66 67 68 69 70

?1 72 73 74 75 75 77 76 79 80
61 62 83 64- 35 85 87 z36 89 90
9192 93 94,96 9697 93 ^^ 100

Any non-prime number is then erased, leaving this display
of the prime numbers between 1 and 100:

0.3 rounded to the nearest
whole number i_ 0
0.5 rounded to the nearest
who le number is 1
.099 rounded tc, t he nearest
whole number is 0

6564

7
17	 19

2 9

37
47

59
fa-,7

Using the Spectrum for More Advanced Malt antics

2 3
11	 13

23

31
41	 4-3

53
61
71

g7

Here's the listing to work the magic:

5 REM PRIME NUMBERS USING
SIEVE OF ERRTO5THENES

10 FOR R=0 TO
20 FOR N=1 TO 10
30 PRINT AT 2*R4-3,3*N-1;10*A+14
40 NEXT N
50 NEXT R
80 FOR R=0 TO 9
70 FOR N=1 TO 10
75 LET P=10*R+N: LET X=2*R4-3:

LET Y=3*N-1
80 FOR M=2 TO 7

100 IF P/N=INT (PSM) AND P<>2 A
ND P<>3 AND P<>5 AND P<>7 THEN P
RINT AT X,Y; INVERSE 1;P: PAUSE
10: PRINT AT X,Y; INVERSE 0;P;AT

110 NEXT M
120 NEXT N
130 NEXT R

Maths Tests: Decimals
We now have two complete programs, which contain full
instructions within the listings, to generate maths tests. The
first one, DECIMALS by Jim Walsh, allows you to specify
the number of questions you wish to tackle, generates the
questions and checks the answers, giving you a percentage
score at the end. The program makes extremely effective use
of such commands as BRIGHT to ensure the output is
always lively:

Usilbe Spectrum for More Advanced Mathematics

	5 REM ..Decima L.s. B14 Ji	 Wa
10 CL5 : PRINT AT 11 3 .; "De cima

Ls By	 Ish. " " "	 Oct
82: PRINT AT 20,2; "Press any ke
y for Fr °rap ts " : PAUSE 300

15 GO SUB 1000
50 LET t=10000: LET m=100: LET

0=1000: LET go=go+1
51 PAUSE 200: LET new=INT (RND

*4)+1: IF new=2 THEN GO SUB 300
52 IF new=1 THEN GO SUB 100
53 IF new =3 THEN GO SUB 400
55 IF new =4. THEN GO SUB 500
Sg IF go=last THEN GO TO 2000

	

BO FOR n=2 TO 100: NEXT	 CLEF
: PRINT Pr 10., 5; INT (per o *100

Correct! ";AT 15,3;"Thats a
fer "; q 0;" StimS.";AT 20„3;1ast-
go;" Left to do.": PAUSE 100: GO
TO SO

99 REN ++++++ ADDITION
100 LET rnd=INT (RND*5)+2
105 DIN x(mnd): DIN y(rnd): DIM
z irnd)
110 LET total=0: FOR n=1 TO rnd
GO SUB 220: LET x (n) =to t : LET

total=total+tot: NEXT n: LET z$=
STR$ total

115 CLS : PRINT AT es. , 27; "No . "; 9
o; PRINT AT 0,5; "Addi tion Of Dec
i ma Ls " : PRINT OUrER 1; AT 0.. 5; "

PRINT AT 3 „ 3
; "Add the following to 3 places"
: PRINT AT 5,0;" ";: FOR n=1 TO
rnd : PRINT x (n) ; : IF n (rnd THEN
PRINT "	 ";
120 NEXT n: LET v $=STR$ total-

PRINT " = ??" : INPUT "Type in yo
um ans "; LINE i$
125 IF i $=v$ THEN GO TO 180
129 REM wrong
130 CLS : PRINT AT 11 , 5 ; "

t h	 rfs

Tki.OR-Rpp
Wi;r4

: FOR j::3 TO 300:
NEXT X : CLS : PRINT AT 5, 0; "
135 FOR n1 TD rnd : LET p$=;.57-R$
INT x (n) : PRINT TAB 10-LEN p $;

(n): PAUSE 30: NEXT n: LET p=5T
R$ TNT to t al : PRINT TAB 9-LEN $

: FOR n=I TO LEN z$: PRINT.,: NEXT 11: PAUSE 30: PRINT TR
B-10-LEN p to t a : PRINT TAB -L
EN p $; " : FOR n=1 TO LEN Z$: P
RINT OVER 1; "_"; : NEXT fl: PRINT
140 FOR K=1 TO 500: NEXT k: PF I

NT AT IA , 27; "Ci " : PAUSE 0: ART
NT AT 21.. 3; "Hang on! ": RETURN
179 REM correct
180 LET per=per+1: CLS : PRINT

PT 11, 4.; "We	 done_! 1 "	 "

67

Using the Spectrum for More Advanced Matibuttics

Sang On.": PAUSE 0: PRINT AT 21,
3; "Hans on!! : RETURN

219 REM 	 RANDOM NO. 	
220 LET a=INT (RNDA.l),4-m
225 LET b=INT (RND*0)4-m: LET - a$

=STR$ b: LET dec=b/lOtLEN a$: LE
T tot=a+dec

226 IF b=10 OR b=100 OR b=1000
THEN GO TO 225

230 RETURN
299 REM --- SUBTRACTION--
300 DIM x(2): FOR n=1 TO 2: GO

SUB 220: LET x(fl)=tot: NEXT n: I
F x(1)<=x(2) THEN GO TO 300
302 LET totat=x(1)-x(2): IF tot

aL<100 THEN GO TO 300
305 CLS : PRINT AT 0,27;"No.";g

o: PRINT AT 0,0;"	 Decimal Subt
raction";AT 0,3; OVER 1;- 	
310 PRINT AT 11,3;x(1);" - -;xt

2);' -
315 INPUT -T ype in the answer -

; LINE i$
320 IF i$=STR$ total THEN GO TO
380
325 CLS : PRINT "WRONG!!!"

I will show the answer": PAU
SE 250: LET z$=STR$ INT x(1): LE
T q $=STR$ INT x(2): LET w$=5TR$
INT total
330 PRINT "';TAB IO-INT LEN z$

;x(1)
331 PAUSE 30
332 PRINT TAB 10-INT LEN w$;xi2

--: PAUSE 30
334 PRINT TAB 9-INT LEN w$;" -;

• LET v$=STR$ total: FOR ni TO
LEN v$: PRINT "_";: NEXT n: PRIM

335 PRINT TAB 10-INT LEN w$;tot
al: PRINT TAB 9-INT LEN w$-
FOR n=1 TO LEN V$: PRINT "_-;:

NEXT n: PRINT "
340 FOR k =1 TO 400: NEXT k: PRI

NT AT 20,25;-0.K. - : PAUSE 0: PRI
NT AT 21,3; 'Hang on!!"

345 RETURN
380 LET per=per+1: CL5 : PRINT

'PI"AT 11,0;"Well done- CORR
ECT!!": PAUSE 0: PRINT AT 21,3;"
Hang on!!": RETURN

399 REM XXX MULTIPLICATION XXX
400 DIM i(2): DIM X (2) : DIM d (2

3: LET ten=0: LET t=100: LET m=1
: LET 0=100
405 FOR n=1 TO 2: GO SUB 220: L

ET i(n)=a: LET x(n)=tot: LET d(n
)= IJAL a$: LET len=len+LEN a$: NE
XT n
410 LET total=x(1)*x(2)

Us. the Spectrum for More Advanced Mathematics

415 CLS : PRINT AT 0,27;"No."Lq
; PRINT AT 0.0;"	 MULTIPLICA

TION-: PRINT AT 0,0; OVER 1;"
420 PRINT AT 5,0;"What is-: "&l.

TAB 6;x(1);- X -;x(2);" ??-"'
"Type in the answer.": INPUT LIN
E s$

425 IF s$=STR$ total THEN GO TO
490
427 LET u$="I WILL SHOW YOU THE
ANSWER": PRINT "INNA.": PAU

SE 100: PRINT "" -;: FOR N=1 TO
LEN U$: PRINT U$(N TO N);: PAUS

E 10: NEXT N: PAUSE 100: CL5
430 PRINT 1(1);"."; BRIGHT 1;D(

1): PRINT I(2);"."; BRIGHT 1;D(2
); BRIGHT 0;" X": FOR N=1 TO 6:
PRINT -";: NEXT N: PRINT - ": P
RUSE 100: PRINT AT 2,10;"=": PAU
SE 50: PRINT AT	 decim
at place-L.": PAUSE 200: PRINT AT
2,12;-
432 LET »$ =2TR$ i(1)+STR$ d(1).
LET n$=STR$ i(2)+STR$ d(2): PRI

NT TAB 20-LEN i$; »$: PRINT TAB 2
0-LEN n$;n$;" X": PRINT TAB 19-L
EN n$;" -;: FOR n=1 TO LEN n$: P
RUSE 5: PRINT	 NEXT n: LET
p=0: PRINT " ": FOR n=LEN n$ TO
1 STEP -1: PAUSE 20: LET ans=VAL
m$*VAL n$(n TO n)*101'p: LET b$=

STR$ ans: PRINT TAB 20-LEN b$;b$
: LET p=p4-1: NEXT n
435 LET ans=VAL J»$*-URL n$: LET

b$=STR$ ans: PRINT TAB 19-LEN b$
- -;: FOR n=1 TO LEN b$: PAUSE

5: PRINT "_";: NEXT n: PRINT
PRINT TAB 20-LEN b$;b$: PRINT

TAB 19-LEN b$:- -;: FOP n=1 TO L
EN b$: PAUSE 5: PRINT- "_-;: NEXT
n: PRINT -
440 PAUSE 100: PRINT AT 21,0;"

";total;"	 ans.": FOR k=1
TO 250: NEXT k: PRINT AT 21,28;“
0.K.-: PAUSE 0: PRINT AT 18,28;-
Hang": PRINT AT 19,25;-On?": RET
URN
490 LET e-= erf1: PRINT —Wet/
done uPET-: PAUSE 0: PRINT

'"Hang on!!	 RETURN
4-99 REM A A A DIVISION A A A
500 REM
505 00 SUB 220: LET 11=LEN a$::
LET b$=STR$ tot
510 LET 1=100: LET m=1: LET 0=1

00: GO SUB 220: LET t2=LEN a$: L
ET c$=STR$ tot: LET 12=LEN a$: L
ET d$=STR$ (VAL b$,e VAL c$)

515 LET 4=LIRL d$: LET d1=INT id
): LET 42=d-dl: LET e$=5TRt d2

68 69

Using the Spectrum for More Advanced Matlijrtics

520 LET d3=UAL e$(6 TO 5): LET
ßf4 =VAL e$(5 TO 5): IF d3:4 THEN
LET d4=d4+1
525 LET e$(5 TO 5) =STR$ d4: LET
e$=e$(1 TO 5) : LET d1=d1+UAL e$
: LET r-$=STR$ dl
530 CL5 : PRINT AT 0,0;"	 t?Ita 1.

SION-; AT 0,0; OVER 1;-
" ;AT 0,27 "Na."; 90
5 .35 PRINT AT 4, 3; . 'l..*hat is -;b$;" A "; c$; " =0"; AT 15.0; "T ype in
your answer correct " ," 	 to thr
ee decimal `laces": INPUT LINE i

$540 IF i$ =f$ THEN GO TO 490
545 CL5 : PRINT	 agalgr: PRIS

E 100: PRINT AT 12.0;-I wi L l shit
w you how to do it."_ FOR n=1 TO
200: NEXT n
550 CL5	 PRINT AT 0,0; c$; "B"; b

$;: PAUSE 15: PRINT AT 0. LEN c$;'
OVER 1;" ";: FOR n=1 TO LEN b$:
PAUSE 15: PRINT OVER 1; "C"; : NE
XT n: PRINT " = "
551 IF 11?l2 THEN LET 13=11
552 IF 12>L1 THEN LET L3=12
553 IF 11=12 THEN LET 13=11
555 LET x=VAL c $ * 10t L 3 : LET g$=

STR$ X: LET x=VRL b$*10i'L3: LET
h,$=5TR$ X
559 PAUSE 100
560 PRINT AT @,,LEN b$+LEN c$+4;

g $; "B" , h $; RT 0,LEN h$!-LEN c$+LEN
g$+4; OVER 1,- "; : FOR n=1 TO L

EN h$: PAUSE 15: PRINT OVER 1;-C
-;: NEXT n: PRINT " _'
555 LET d=INT VAL d$: LET d1=VAs
L d$-d: LET t$=STR$ dl: LET d$
TR$ d+°'."+t$(3 TO 6)

570 LET t =INT VAL d$: LET t$_,=.,T
R$ t: PRINT AT 3, 0; TAB 18-LEN t$
;d$
580 PRINT AT 4 , 0; TAB 18-LEN h$;

h$
585 PRINT AT 4 . 0; TREE 17-LEN h$;
590 FOR n=1 TO LEN h$+LEN d$: P

RUSE 10: PRINT OVER 1; "C"; : NEXT
595 PRINT AT 4, 0; TAB 17-LEN h$-

LEN g$; g$
500 PRINT RiT 7,10;' _";c-*T 10,14;
" "; : FOR n=1. TO LEN f$: PRINT f
$ (n TO n) ; : PAUSE 30: NEXT n: PR
INT "	 ans.": PAUSE 300: PRINT
AT 21,27;-0.K."
505 PAUSE 0: RETURN
1000 DATA 24,24,0,255,255,0;24 ,24
1001 DATA 31, 16. 8, 8, 8, 8, 5, 15
1002 DATA 255,0,0,0.7.0,0,0
1005 RESTORE : FOR n0 TO 23: RE

U. the Spectrum for More Advanced Mathematics

AD a: P0KE 32500+n : a : NEXT n: LE
T per=0: LET go=@
1010 CL5 : PRINT AT 5,2;-How man
y sums-"-do q ou want to do?-;AT
21;2; 'Enter number" INPUT LINE.
i$: FOR n=1 TO LEN i$: LET a =CU

DE i $ In TO n):_ IF a c45 OR a.57 T
HEN GO TO 1010
1015 NEXT n : LET l a= t =UAL i$: CL

PRINT "HANG ON! ! 	 RETURN
2060 CLS	 PRINT TAB B; "Tha is it
1 ! "; AT 5,3; "Out of "; last; " sums
.• you got -;INT (per/Last

*100);"%-: PAUSE 200: PRINT AT 2
1;25;-0.K.": PAUSE 0: RUN

Gwyn Dewey's program — MATHS — is more of a game,
but one which has considerable value in developing
numerical skills. The game is designed for four players.
There are ten tests for each player, and the winner is he or
she who does best out of their round. The program uses the
players' names, and prints the results of the test in a
particularly effective way.

You'll see (line 506) that there are ten possible kinds of
tests which can be produced by the program:

1 REM @ 24/7/82 0 . D e w e t,t Maths
2 LET d$=-Maths-
3 GO SUB 8000
4 CLS
5 DIM a(4)
5 DIM c $ (4, 10)
7 DIM å $ (4 ,15)
10 PRINT -Maths"
20 PRINT '-for 4- players-
30 PRINT ' . 'there are 10 tests

to do o f ten questions and a ta b
Le is sh ow n of questions correc
t"

40 PRINT "'each per s on tak e s a
test until all have been d o ne-

then the	 winner is f o und"
S0 PRINT ` FLASH 1; . 'Press to s

tart"
E+0 IF INKEY$ =" " TH.EI',! GO TO 80
70 CLS
80 PRINT "Enter names"
90 FOR 1 =1 TO 4

100 INPUT "Player "; (i); •'?"; L.i
NE a$(d)

110 NEXT i
130 CL5
135 I'a= c $ t J. ., '1O? # ? AND c$(2,1

0)<>" " AND c$(3,10);›- " AND C:lå
(4, 1.0) ? ,• .. THEN GO TO 2000
140 PRINT "Maths""-Menu card"
145 LET m =98+i *1.8

70 71

Using the Spectrum for More Advanced MatOtatics

150PRINT — 1=Goto work card"
lee PRINT "2=Print percentage'
170 PRINT "3=Print Graph"
175 PRINT "4=quit"
180 INPUT "Which choice?"; LINE
C$: IF e$"1" OR e$>"4" THEN GO
TO 180
190 CLS
191 IF e$="4" THEN GO TO 2000
200 GO TO VAL e$*500
500 INPUT "player(1-4)?"; LINE

s$: IF s$<"1" OR s$>"4" THEN GO
TO 500

505 LET F=VAL s$
506 PRINT "0=easy addition-1=

average addition-2=hard addit1
on"'"3=eas t4 5ubtraction-4=aver
age subtraction-5=hard subtrac
tion"'"5=easy. muLt1pLication---7
=hard multiplication-8=easy di
vision/-round to nearest	 9J-
division)-whole number."
510 INPUT "which work cardf0-9.1

?"; LINE g$: IF g$="q" THEN GO T
0 130
511 IF LEN cl$>1 THEN GO TO 510
512 IF g$C'el- OR g$>"9" THEN GO
TO 510
515 FOR 1=1 TO 10: IF c$(F,1)=g

$ THEN GO TO 130
516 NEXT i
520 LET b$="4-4-4----**0/"
530 FOR 1=1 TO 10: IF c$ff,1).(:)

- THEN NEXT 1
540 LET c$(f,i)=q$
570 LET z=URL g$4-1
580 IF z=1 OR z=4 OR z=7 THEN L

ET h=1
590 IF z=2 OR z=5 OR z=8 OR z=9
THEN LET h=2
500 IF z=3 OR z=5 OR z=10 THEN

LET h=3
610 CL5
520 PRINT "Work card ";VAL g$
530 PRINT ' FLP5H 1; "press. to s

tart-
640 IF INKEY$=-" THEN GO TO 640
641 LET j=0
545 FOR 1=1 TO 10
R50- CLS
555: PRINT "Question -;1
556 PRINT j;" out of -;1-1
557 PRINT "Player:-;a$(f)
560 LET a=INT fRND*10th)
570 LET b=INT fRND*10th)

575 IF a<b THEN IF 1=4 OR z=5
R z=6 THEN LET y=a: LET a=b: LET

b=9
550 IF z=9 OR z=10 THEN LET b=I

NT (RND*101(h-1))

731 FOR L=1 TO 250
732 NEXT L
740 NEXT 1
750 LET aff)=a(f)40)
780 GO TO 130

2.010 PRINT 	
1020 FOR 1=1 TO 4
1030 PRINT 'a$f1);" -;afi);"%"
1040 NEXT 1
1050 PRINT ' FLR5H 1; "Press- q to
qui t"

1050 IF INKEY$<>"q" AND INKEY$)
-'=" RND INKEY$(>"0" THEN GO TO
1080
1070 GO TO 130
1500 FOR 1=1 TO 4
1510 PRINT a$(1);"cards:";c$(1)
1520 PRINT PRPER 2; 	44
1530 NEXT i
1540 FOR 1=1 TO 4
1545 LET m=175-i*16
1546 LET .'a(i)
1550 IF a(i)=0 THEN NEXT i
1560 FOR j=0 TO v*2-1
1565 FOR o=m TO m+7
2.570 PLOT INK 4;j,o
1580 NEXT o
1590 NEXT j
1500 NEXT 1
2610 PRINT PT 21,0; FLASH 1;"Pre
as q to quit"
1.620 IF INKEY$<> " q " RND INKEY$1)
"<=" AND INKEY$>"0" THEN GO TO
1620
2530 GO TO 130
2000 CL5 : PRINT "alt finished"
2010 FOR =1 TO 4
2020 IF a(i)>=a(1) AND a(i)>=a(2

Usfethe Spectrum for More Advanced Mathematics

681 1F h=0 THEN IF z=9 OR z=10
THEN GO TO 650

590
STR$

595
695 GO TO 700
897 PRINT RT 21,0; "Enter answer
as a number please".
700 INPUT "What is ";(a);fb$M.R

L g$4.1));(b);"?"; LINE x$
702 IF x$=" " THEN GO TO 700
705 FOR n=1 TO LEN x$: IF {$Çnl

("0" OR x$fn)>"9" THEN GO TO 697
705 NEXT n
707 PRINT PT 21,0;"
710 LET X=VAL z$
720 IF VRL x$=k THEN PRINT RT 2

1,0;"Right.": LET J=j+1
730 IF VAL x$<>k THEN PRINT PT

21,0;"Wrong.The answer is ";k

LET
h
LET

z$=5TR$
z$=5TR$

a+b$(URL	 g$4-1)-1,
fINT	 ffidAL

72
	

73

Using the Spectrum for More Advanced Matl.tics

) AND "a { i) > =d t 3? F?ND rà t . i > =;,)41-.1
THEN PRINT "winner: ", a$ ti
2030 NEXT à
2040 GO TO 9000
6000 BORDER 7: FRPER 7: INK tat: C

6001 FOR g =1 TO LEN d
6005 LET f =LoSR "a"
$010 LET e r t tCODE d.$ f	 --3,2 ► :YE}.1
5515
8020 FOR y =e TO e+7
8030 FOR 1=1 T O 2
8040 POKE f „PEEK +,o
5050 LET f =f 4- 1
5050 NEXT z
5070 NEXT y
6080 PRINT AT 9,g;
a090 PRINT AT-	 gi ":•:" 8100 NEXT g
8200 PPUSE 300
64-00 RETURN
9 c110 INPUT " D o you want t o g o t o
the next	 p	 ".program ty:°n^^,z$

9920 IF z,^='.n .. THEN RUN
992E PRINT "Press- play on tape r
ea:vrder"
9930 LOR1? " `°

Maths Tests: Correlation/Regression

Finally, in this chapter, we have the program CORETS
(Correlation/Regression) by Paul Toland. Although you
may not have a need for the program in this form in your
lessons, it is included as it is a very good example of how a
known mathematical process can be converted into a
program. Regression is the process of fitting a best straight
line through several points on a graph. This straight line will
take an average path between all the points. If this line is
then extended past the end of the known data, a forecast is
made of the next, as yet unknown, figures.

Depending on the data given, some regression lines are a
more accurate reflection of the original figures than others.
The closeness of the `fit' of a line is measured by the
correlation coefficients.

When you run the program, you're asked if you will want
the results sent to the printer in the course of the program. If
you answer `Y', you'll be given the opportunity to COPY the
screen at all important points in the program. If 'N' is
entered, then the question "PRINT THIS PAGE?" will
never be asked.

Next you must enter the data. This is done in two stages,

Ugh the Spectrum for More Advanced Mathematics

with the X values first and then the Y values. The X values
are independent figures. For example, for yearly sales'
totals, the X data might be 1984, 1985, 1987 etc. It is possible
to use other equivalent values without affecting the results,
such as 1, 2, 4. You choose the base value (1 in this case) and
then use similar increments as appear in the original data.

When entering data for time series calculations (time
series calculations are used to take account of the
fluctuations in data which are caused by seasonal factors;
they are only useful for applications in which the data
consists of a repeated pattern), it becomes essential to use
this alternative notation for the X values. For example, for
quarterly sales figures:

Year Quarter
'84 1 you must enter 1

2 you must enter 2
3 you must enter 3
4 you must enter 4

'85 1 you must enter 5
2 you must enter 6
	

and so on

Note that for time series calculations, missing seasons are
not allowed. Therefore, in the above example, the quarters
cannot be 1, 2, 4, although an entire missing period should
not affect the results too adversely.

Once all the X values have been entered, enter 9999 to
stop. The Y data are now entered in their original form.
They are called the dependent data and might consist of,
for example, the sales figures and production totals. A
maximum of 100 sets of figures has been placed on the
program.

Once all the data are entered, the program prints the
correlation/regression results. The important ones are
Pearson's coefficient, the coefficient of determination and
the equation of the regression line.

You are then given the chance to interpolate or
extrapolate on the regression line. You enter a value of X in
the same notation as originally used when entering the X
data, and you are given the value of Y at that point on the
line. This can be used for forecasting. For example, if you
have entered the sales for years 1 to 10, then entering 11 will
give you a forecast of the next year's sales figures.

The program then plots a graph with the original data and

74
	

75

INPUT "Pre
PAGE	 ;

THEN COPY

Using the Spectrum for More Advanced Mathiktics

the regression line superimposed.
After the graph has been drawn, you are asked if you wish

to continue into the time series part of the program. It only
makes sense to do so if the data is of a seasonal nature. If
you decide to continue, you must enter the length of the
period. That is, the number of values that make up one
period (such as 4 for quarterly sales figures).

Next you enter the type of model you want to use, either
multiplicative or additive (M or A). Once this is entered, the
program plots in the graph of the moving averages of the
data. As you will see, this varies throughout the data and so
is more flexible. A freak value near the start of the data will
not affect the end of the line.

The seasonal factors are then printed followed by the
original data in seasonally adjusted form. Lastly, the
program prints the forecast figures for the next two periods,
before asking if you want a re-run of the program.

After all that, here is the listing (the background to the
maths involved in the program is given after the listing, just
in case you'd like to refresh your mind on it):

2 REM CORETS P p TOLAND e3 REM
4 REM CAPS-ONLY FUNCTION.
E DEF FN Z.$ t:A: $:= t C:HR $ (CODE:,$? -32* (CODE ?C$390x))
å RE M t CAPS-ONLY FUNCTION.

10 PRINT " CC+RETS a - C ORRELATI O NFREG1c2ESS ION •' 	 TIME SERIESPROGRAM."
20 INPUT '°G.1ILL YOU WANT TO USETHE PRINTER" f A $30 LET P C C+t•-i - 0
40 IF FN Z$ iA$? ="Y" THEN LET PCON =1
50 GO TO 100
50 IF NOT PCON THEN

ENTER"; A$: RET URN70 INPUT "PRINT THI5
^

LP
80 IF FN Z$ (Ali) _.,Y.,

RINT ' -m-----®-_—
•

q0 RE-TURN
100 DIM }f i ä.O4å : DI M Y100)110 PRINT I1*1T "Enter X v aE u e s in order -	 End w i th 9999"12 0 F OR 1=1 T O 100
130 0 INPUT X
140 IF X=19999 THEN GO TO 180
15itic PRINT X: LET X(I)=X
1 50 NEXT I

76

Usilphe Spectrum for More Advanced Mathematics

170 PRINT "100 15 MAXIMUM ALLOW
F

? ^0 LET I =I -1: CL5
190 PRINT °'	 °' ; If " VFtLUE5

'"Enter Y values in order ..
195 LET S11=1E55: LET LFi=4*IE-39
200 FOR J=1 TO I
205 PRINT X t ^ .;J
210 INPUT Y (J .) : PRINT TR5 9 .aY tJ

214 IF Y dJ? > LA THEN LET LA=Y (a,?)
218 IF Y fJ? <511 THEN LET 5M =Y (Li))
220 IF PEEK 23689 =2 THEN GO S UB
50: CL5
-'2E+ NEXT J
:-)30 GO SU5 50
240 LET 5X=0: LET E f' =0
250 LET 5X5=0: LET 5Y5=0
250 LET SXY=O
270 FOR J=1 TO I
250 LET 5X=5X+X id.l:z
290 LET v Y=SY +Y (J)
300 LET SXS=v;riS+X tJ? *X tJ?
310 LET 51f 5=5Y5 +Y ttiJÀ *Y tJd
320 LET SXY=SXY+?f èJ3 *Y (U)
330 NE XT J
340 LET R= (I*SXY-5X*5S{] ,fSOR (i1

*G yiS--SX*SX! * (I*SYS -SY * SY) }
345 CLS
350 PR INT "SUM X: "f 5X r "SUN `r': ";o

SY "SUMSU X SO ,	 i S^iS ' "SUM Y 5G^ ..
SYS r .° 5UM kY . "F SsfY
350 PRINT • 'PERR5O!'d5 CC}RIRELRTIO

N COEFFICIENT	 „ R
370 PRINT • "COEFFICIENT OF DET

E^Få?~1INFaT ION " f R *i=t
380 LET E= t I aESX•'r' -5X *5•Y' å è{ t I 3e5X5-

}5X7
390 LET A =5r': I •m5X/ I *5
400 PRINT ' —THE LINEAR REGRES

 EQUATION: :r .• : :..'• _r. ^ A. 1 .r +" AND
Et> =O)^E; è• " X"

410 GO SUB S.0
:ä.30 CL'S
440 PRINT " INT ERPOL^^^ G OTCsE RRPEN

9^L 1^T]C ON	 ^^

^	 ta FiL L.^E ,, . `^450 INPUT "Et^lTER X
450 IF X=9999 THEN GO TO 495
470 0 LET Y=A+5*X
480 PRINT X.; TAB 8;Y
485 IF PEEK 2555£+ =2 THEN GO 5â-_tB
50: CLS
4 q0 GO TO 450
495 5 GO 5U5 60
500 LET SL =R +S*X t1? : LET EL=s4 +5

*X iI?
502 IF b L >LA THEN LET LA=SL
504 IF EL >LA THEN LET LR =EL
505 IF 5L ; S M THEN LET SM =5L
508 IF EL ; 5t-9 THEN LET S!~i=EL
511+ LET SCk=253f' tX t I? -X (1.) Z

77

Using the Spectrum for More Advanced Ma410natics

520 LET 5CY=1.73 s (LA-53•t)
525 CLS
530 FOR J=1 TO I54-0 CIRCLE i.-r (X € 4J) -X	 * E CX, 1+} Y'; (Li) --sÅ•iJ ^^1 :^` f ^550 NEXT J
550 PLOT 0, (SL --L t-t)*S+Ctir'5 70 DRAW 255, (EL--S hß) }S+C'Y` - t EL -5tvt
580 ^ j GO SUB Ei 60

ERIES
 590 INPUT ."" CONTINUE INTO TIME 5
50I^"^^^^^Z$ (A$) ="N" THEN G O TO^00

^ 4 .1.+0 INPUT "LENGTH OF PERIODPER
620 IF PER c =0 OR PEtå c î INT PE R T`t E N GO TO 610
630 INPUT " MULTIPLICATIVE- COR RDD,ITIVE MODEL (M OR A) ?";M$ 1`1$640 LET t•°t$=FN 2$(11$)
550 IF N$ < > "A" AND t'•1$ < > "M" T H E Nt_ O T O 530
E= 5 0 O i t°# T (PER): DIM A(I)570 LET IP=INT (I/PER) tPER580 LET ENDmI,P?-P,ER3-1590 LET DI4F=PEFi
700 FOR 3=1 TO END710 FOR K=3 TO t..ä 4•PER -3720 LET R t3) =R (J) t'Y' (ti)730 NEXT K
740 NEXT J
750 LET O C'fLk = tPER ;> INT (PEF s2)*2
750 IF ODD THEN GO TO 820770 LET ENP=ET•€D-1780 FOR 3=1 TO END
790 LET R (,m.i) =F4 (3) -1-A t3+1.)800 NEXT J
51. e LET DIV=DIU*ä=
C=^.^0 FO R 3=1 TO ENt?
540 LET A (J) =Fa (3) /DIU850 0 NEXT J850 LET STRT=INT (PEFd:='2) ¢2870 LET X1= FX (5TtzT) --X (1.)) *SCX880 LET Y1 = (A (1) --5M) *5C`t'890 PLOT X 1 , Y 3900 FOR 3=2 TO END910 LET Xå_= tX (STRT-1•FoJ) -)f (ß)) x,5.CX
920 LET Yi = tFt (3) -St1ä) *E=CY930 DRAW X 2 -X å. a •a'.ç -Y 1940 LET)t1=X2: LET Y1=Y2250 NEXT J
'7460 GO SUB 609 70 FOR 3 = 2 TO END980 LET tm. P=vT F3 T - 1 4-3990 LET TP= t: P.= PEt;€-INT (CP: PER):;*PER
995 LET T P =TP +•PER * (TP =0)1000 LET SALE=Y (C:P)1 0 1 0 LET MA=A (J)

78

the Spectrum for More Advanced Mathematics

1020 LET T =S ALE -•i-iA
1030 IF t-1$= " M " THEN LET T =SRLE /t*i

1 040 LET T (TP) rT (TP) +T
1050 NEXT J
1050 LET TOT=O
1070 IF a 1$=" j 1" THEN LET T C.)i`• w EN D
1 080 LET TTL=0 0
1090 FOR J=1 TO PER
1100 LET TTL=Ta L+T (U)
1110 N E XT
1120 LET ACw} = (TTL- t t?T) t'AE L;
1125 PRINT "THE ": P'ER à" SEASONAL

F4=•etåTOP5 ARE:"
1130 FOR 3=1 T O PER
1140 4 0 LET T (J)= (T (+_a)-- t=s%U).s° (E N i? s P E
:)
1 150 0 PRINT J;" " ; T tj)
1 1 50 NEXT J
1170 PRINT — SEASONALLY CeN A L LY ADJUSTED

FIGURES " '"X ."X	 ^ 	 ADJUSTED

1175 LET TP =0
1180 FOR J = :1 TO I
1190 LET T P =TP •r- 1
1200 LET ^°̀rY =Y (3)-T (T P)
1210 IF M$="" p-1" THEN LET 5V =Y (J) /
T ;TP)
1220 PRINT)t (J) ; TAB 5; Y (J) ; TAB
5 5Y
1230 IF TP =PER THEN LET T P =0
1240 IF PEEK 235 89=: THEN GO SUB
50: CLS

1 5.0 NEXT J
1250 Gt? SUB 60
1270 CL5	 "'FC+Rc^•PiLT FOR THE NEXT1280 PRPRINT
TWO PERIODS :n	 PERIOD FORCAST

1290 LET Ir,t C.•:=: _X (i) -X (I - 1.)
1300 LET TP =0
1310 LET åNtr:Y = t tå (EN D)-A (ENO -2) S ?'

1320 LET STX=X (I) -rI.NC?t
1330 LET 5T f` =P (E ND) + I t•JCY
-rz'4-0 FOR JrEND+5TRT-1 TO I
1350 LET S,Ty' =S TY + INC':Y
1 350 NEXT J
1 7i 55 LET TP rTP :+-J --•.i.P
1370 FOR J ëS^ TX TO STX +PER *2 * INC:)•'.
-INCX STEP INCX
• =s80 LET TP = T P 4-'1..
1590 LET FY =STY + T tTP ï	 =

=14000 IF 3-1$""t"^" THEN LET F=^` = ^+T Y" * i`
'TP)
1 410 PRINT J; TAS 8; T g f T A B 13; Fl`
1. 420 LET STY=STY+INCY
1430 IF TP =PER THEN LET TP=0
144-0 NEXT J
1450 G O SUB 60
1450 PRINT ' FLASH
RETS COMPLETE"

79

1; "" CO

Using the Spectrum for More Advanced Matheics
14.70 INPUT -DO O YOU ! ^RNT TO RERUNTHE PRL+GRRP-t ^ (Y OR N) "; R$
14.80 IF FN Z$ (RS) ®"*r'" TH E N RUN

As I said -at the start of the introductory notes to this
section, regression is the process of fitting a best straight line
through several points on a graph. The straight line will take
an average path between all the points. If this line is then
extended past the end of the known data, a forecast is made
of the next – as yet unknown – figures. Depending on the
data given, some regression lines are a more accurate
reflection of the original figures than others. The closeness
of the `fit' of a line is measured by the correlation
coefficients.

Pearson's correlation coefficient, symbolised by the letter
R, gives the strength of the linear correlation. The values of
this coefficient lie in the range –1 to 1. A value close to
either –1 or 1 means a high correlation, a good fit. Values
close to 0 mean a low correlation, a bad fit. Positive values
indicate a line which is rising, and negative values indicate a
falling trend. Among other things, a high correlation means
– naturally enough – that any forecasting based on the
observed data is likely to be reasonably accurate.

The coefficient of determination is very nearly the same as
Pearson's; it is R squared. It falls in the range 0 to 1. If R =
0.8 then R T 2 = 0.64. This would mean that 64% of the
variation in the observed values of Y is explained by the
model.

Of course any calculations based on only a few figures will
be meaningless. Several sets of data are needed to give some
indication of the general trend.

Time Series
Time series calculations are used to take account of the
fluctuations in the data which are caused by seasonal factors.
Therefore, they are only useful for applications in which the
data consist of a repeated pattern. Such patterns could be
quarterly sales figures (each year would have four numbers
attached) or daily production totals (which could have five,
six or seven figures per week). In this last example, the
period would be the week, and its length would be five (or
six or seven).

The relationship between the size of a particular figure

Usilehe Spectrum for More Advanced Mathematics

and the season in which it falls can be calculated and is called
the seasonal factor. By the way, a season in this context
refers to the part of the period in which the number lies, and
can refer to the day of the week or the quarter of the year.

When the data are affected by seasonal variation, the
figures in one period cannot usefully be compared with each
other. For example, if you sold toys, then you'd probably
expect your Christmas sales to be better than your summer
ones. If in one year you have an unusually quiet Christmas,
and a strong summer, then comparing the two sales figures
would not reveal this, since the Christmas figure would still
be higher than the summer one.

If, however, you can remove the seasonal factor from the
figures, the true situation can be assessed. In a term familiar
to us from government pronouncements on unemployment,
modifying the figures in this way is called seasonal
adjustment. Forecasting from Time Series can lead to more
satisfactory results as the figures produced will also follow
the seasonal pattern.

Note that there are two types of time series model:
Multiplicative and Additive. Multiplicative is used when the
deviations from the trend per season vary greatly from
period to period. The Additive model is used when there is a
more or less constant seasonal variation.

Whatever the application, the results from any forecasting
made using either the linear regression or the time series
methods cannot be taken in isolation. Sales might fall
because of a recent price rise, production may increase
because of newly-installed automatic machinery. These
events will affect the figures, but the computer cannot
possibly know about them. You must therefore view the
forecasts made by the Spectrum in the light of any other
information you may have which is not reflected in the data
you have used.

80 81

CHAPTER SIX

Using the Spectrum graphics effectively
Part One

One of the great advantages of the Spectrum over many
computers is that you can define your own graphics. This is
of tremendous value in such subjects as languages,
chemistry, geography and music.

The Spectrum graphics are formed on an eight by eight
grid (of `pixels'), with certain of the pixels being black, and
others white. The patterns formed by the black and white
pixels on the grid are actually the letters, numbers and so on
you see on the TV screen. The Spectrum allows you to make
your own patterns, to form musical notes, letters with
accents, and any special symbols you need.

The information is stored as a series of zeroes (pixel
turned off, or white) and ones (pixel turned on, or black).
Here, to try and make that clear, is an eight by eight grid.
On it is a form of the letter `a', and beside it is the `bit
pattern' of ones and zeroes which forms the letter:

corresponding bit pattern
00000000
00011110
00000010
00000010
00011110
00010010
00011110
00000000

As you can see, each of the bit patterns is actually a binary
number. The computer has been programmed so that by
giving it eight binary numbers where the ones correspond to
the areas we want to have black in the character we're
creating, and the zeroes correspond to the white spaces, we
can form a letter.

41I ig the Spectrum graphics effectively — Part One

Now as each row of eight zeroes and ones is a binary
number, the maximum number we can have is
11111111 or 255 in decimal (128 + 64 + 32 + 16 + 8
+ 4 + 2 + 1 = 255). Every possible combination of pattern
has a unique number between zero and 255. By sketching a
design on an eight by eight grid, and then working out the
decimal equivalent for each line, the design can be assigned
to certain keys on the Spectrum (any of the letter keys from
A to U can be assigned a graphic character you've created,
and the character is accessed by putting the computer in the
graphics mode before pressing the relevant key.

Church Spire
You put a character of your design into place using a simple
program such as the following, in which the decimal
equivalents of the binary numbers which form the pattern
you want (and there is a binary/decimal conversion chart in
the appendices to simplify this task) are placed in the DATA
statement, and the key which you wish to assign to the
character is placed in quotation marks after the word USR in
the following program:

5 REM C HURCH WITH SPIRE
10 DRTR 16,1E1,124,$6,iE,124,12

4.1?iS-
' 20 FOR X=0 TO 7
30 READ i
40 POKE U5R
50 NEXT X

This program produces a little symbol (of a church with
spire) which would be suitable to use on a map. You get the
computer to print the symbol either by pressing the 'A' key
after getting into the graphics mode, or by telling the
computer to PRINT CHR$ 144:

t

I	 I t

Here is the relevant pattern on the eight by eight grid,

82
	

83

Using the Spectrum graphics effectively — Part

with the binary numbers and their decimal equivalents
beside them:

=00010000=16

= 00 010000=16

=01111100=124

= 0 0 0 1 0 0 0 0 = 16

=00010000=16

= 0 1 1 1 1 1 0 0 = 124

= 01111100=124

= 0 1 1 1 1 1 0 0 = 124

Coniferous Wood
It is sometimes necessary to print a defined character in two
or more parts. This can happen if you decide that a single
character cell is too small for your needs. The next program
first defines a `tree' character, and then uses it with existing
Spectrum characters to create another Ordnance survey
graphic – coniferous wood, unfenced:

Coniferous wood, unfenced

1110g the Spectrum graphics effectively – Part One

Here is the program to produce that effect, with the little
trees in line 150 produced by getting into the graphics mode,
then pressing the A key:

10 REM CONIFEROUS WOOD
20 FOR X=0 TO 7
30 READ Z: POKE USR "R" +X . :40 NEXT T X

100 Pfsia.ER 5: INK 4: BORDER 1: C
LS

105 PRINT iNr. 9; AT 3.2; ' Coni f e i
OUS W00 sß unfenced"
110 PRINT INK 9: AT 10,11; ,. 	

"J	 11.10: ..	 fiT 11} 1^ ; ...a..
120 FOR x =1 TO

 ,e";
13^.̂ PRINT INK 9; AT 11+:k . 9: "I"; ..s

T 11+x ,20; " 1"
135 NEXT
14-0 PRINT INK 9; AT 15 . 1el; .. " T16.19; .. ^ ..
15 PRINT RT 12,14-; ..^	 ^•°; AT 1

4,12; "^=	 ^-	 ^ ,. - RT	 5. 13; "-.t 160 PRINT livi-. 9; AT 17 „ 11; 	
170 DATA 15,15 ..55 .. 54 . 145 " 55,04- :15

Such graphics can be incorporated into a simplified map,
with a key letter by the side, with the pupil being asked to
identify each character, or they could even be placed into a
multiple choice quiz program.

Chemistry Subscripts and Superscripts
The following program follows up this idea, but in a
different subject area – Chemistry. In this subject, as you
know, there are certain symbols which are unique and can
only be obtained using a microcomputer with user-definable
characters. As before, the characters were first drawn out on
an eight by eight grid, and the resulting decimal number was
placed into DATA statements. Because there are a number
of characters to be defined, the READ and DATA are in a
separate FOR/NEXT loop.

The defined character with its corresponding keyboard
character is given in the following table. The keys 'A' to `L'
have been chosen so that a template could be constructed to
lay over that row of keys to help remind you which symbol is
assigned to which key.

t	 ^	 ^ t

f
j	 ^^• ^ :^ ^ t

R4
85

Using the Spectrum graphics effectively — Pa.re

SYMBOL KEY CHR§

Superscripts

+ a 144
— s 162
2+ d 147
2— f 149
3+ g 150
3— h 151

Subscripts

2 j 153
3 k 154
4 1 155

Here is the program which produces the Chemistry
subscripts and superscripts:

10 REM CHEMISTRY SUBSCRIPTS
AND SUPERSCRIPTS

20 LO SUB 500
25 INK 1: BORDER 1: PAPER 5: C

L S
30 PRINT I!`dii 9;-Get into to Graph

iLs Hode, then	 trq the keys A
to L"
40 STOP

500 DATA -A-,16,16,124,16,16,0;
0,0
501 DATA "5,..0.4,124.Q.0,0.ir3.0
502 DATA D34 ..82.23311-4-0-

0, 0
503 DATA "F",32,80,23,32,112,0

0
^544 D ATA "i=-" . 114, :35, 5S, 1e3, :114. 0
.0.C^
505 DATA "H",112,16,55,16,112,0

>0,0SOS DATA "L.i",0,0,0,32,80,1E,S2.
112
507 DATA -K",0,0,0,112,16,40,16

,112
503 D ATA “L”,0,0,0,16,48,60,120

=3S
F.-54 ^FOR X=1 T O
520 READ A$
530 FOR A_0 70 7
540 PERL? 6: P OKE USA R$4-A,6
550 NE XT A
L 50 NEXT X
570 RETURN

fling the Spectrum graphics effectively — Part One

Here is a small sample of what can be written when the
program has been run. Note that a program to define
characters can be deleted once it has been run, as the
redefined characters remain even after 'NEWing'. They will
stay there until you disconnect the power:

Chemical	 Symbol.

^ - uGpperll Sulphate 0u504

2 -	 Sulphate te Fe2 t504)3

3 - Aluminium ion	 i-tt3t

Neutralisation reaction:

H^ (dQ) + OH (as) —: Hs 0 (l)

And if you wish to repeat this demonstration, here's the
program I used to produce it:

1000 ?PRINT " FE Rai ca l";TAB 22; "Sy
bo t '

1010 PRINT "'1 — 0opper ll 'Sulpha
t e ' : TRS 22; "C€ç ç04 ..
1020 PRINT — 2 —	 Sulphat t
e";TAB 22; "Fe2 (5O4) a "
10 30 PRINT '"S - Aluminium ion";
TAS 22:"A1.34-
1040 PRINT " "`Ntutratisatic?n re
.^'Lt i vn: "
1050 PfàINT — 1-1 + (as) -t- oH — tag)
-. H20 t t)"

Molecular Weights
Our next program uses the defined symbols. The chemical
formulae for five substances are stored in an array. The
value for the weight of one mole of each of these substances
is stored in another array. One of the substances is chosen at
random from the array and at the same time a value between
0.5 and 2.5 is chosen as a multiplying value for the molecular
weights.

The student is given the formula for the chosen substance,
and the number of moles. He or she is then asked to key in
the correct mass in grams.

Once you've run the program in its present form, you'll

86
	

87

Using the Spectrum graphics effectively - Part

probably find a number of ways to improve it, such as (a)
making it more 'friendly' by getting the computer to ask for,
and use, the student's name; (b) giving a score of correct
answers at the end, with a suitable comment depending on
the number scored; (c) by increasing the number of
substances; and (d) by printing on screen a page of atomic
weights.

In this program, I've used the standard approximate
values as used in C.S.E. and '0' level examinations:

Calcium 40	 Carbon 12	 Hydrogen 1
Iron 56	 Lead 207	 Nitrogen 14
Oxygen 16	 Sodium 23	 Sulphur 32

In order to obtain the chemical subscripts and
superscripts, the previous program is embedded in this
program as you can see:

2.0 REM moLecuLar weight
calcutations

15 LET SC=0
GO SUB 500

25	 PAPER 5: INK I: BORDER1
100 FOR J=1 TO 10
205 LET X=INT tRND*5)+1
110 LET Y=INT fRND*5)*0.54-0.5
115 CLS
120 PRINT INVERSE 1;AT 06; "Pro

btem number
125 PRINT -ubrx out the MaSS- in
g rams of:--
1'.30 PRINT INVERSE 1;AT 4,2;-5UEi

STANCE	 NUMBER OF HOLES"
135 PRINT AT 7,3;A$(X);AT- 7,22;

140 PRINT INK 9;RT 14-Ke g in
g our answer to the-,-nearest gr

ail then press -; INVERSE 1;-ENTE
R -
150 LET ANS=VAL f0$(X))*Y
150 INPUT 0$
165 IF 0$=-- THEN GO TO 150
170 IF CODE C5$- OR CODE C$›55
THEN GO TO 150
150 IF VAL_ 0$<AMS - 0.05 OR VAL.
C$ ›ANS 4. 0.05 THEN GO TO 250
azei 0L5
205 FOR X=1 TO 300
210 PRINT FLASH 1;RT

are correct!"
220 NEXT X
230 LET 50=504-1
235 NEXT J
240 GO TO 700
250 CLS

leg the Spectrum'? graphics effectively - Part One

260>PRINT INVERSE 1;AT 10,0;-I
am_sorry, but you are wrong-PRINT " -Me answer is -;AN9Mä''
270 PAUSE 100
PRO GO TO 235500 DATA -A",15,I5,124,15,18,0e0,0aD:i DATA ”S“,0,0,1240,00
502 DATA -D-,34,82,2n,34,114,0,

rt;n
k03 DATA -F",3223,32,112,0,

0,n
504 DATA -G-,114,16,55,18,114,0
505 DATA -H-.,112,15,55,15,112,0

DATA112
507 DATA "K,e,e,0,l12115,4.8,15

,112See DATA -L-15,48,80,120
,15
510 FOR X=1 TO
520 READ A$--441.‘1 FOR A=0 TO 7
540 READ B: POKE USA A$4-P,6
5570 NEXT R
550 NEXT X
500 DIM A$f5,12)
505 DIM B$i5,3)
510 DATA -0U,504..SH20-,-CR003-,-

FEIIM(504)3-,-PhiNO3,1 2,- , -Na0H -
515 FOR X=I TO 5520 READ Z$: LET A$(X)=Z$
825 NEXT X

DATA -250-,-100-,-400,-331
635 FOR X=1 TO 5-
640 READ Z$ LET-asAtx1=z4
545 NEXT X
550 RETURN
700 CLS
705 PRINT AT 8,3,-You scored -;

50;- out of 10-
7 10 PRINT "-Press any key_ for

another run"
720 PAUSE-0
730 RANDOMIZE
740 GO TO 100

Work out the mass In g rams Of:-

J 5TRCET-	 j-fT

Ph(NO3)2

Key in gour anse-r ta the.
nearest gram then press ENTER

0

L5::; 	 I

88 89

Using the Spectrum graphics effectively — Part S

Work r k out t the mass, s s, in	 s

.r;:t t	 .:mumsep:	 r , jO i_ E ^•

5

å.e l4 in goo * 3rt:itk ^r- ta th.e ^nearest gram then press L 'g.^

You scored 7 ou t of 10
P ress any key for another run

To make the program larger, more substances can be
placed in the array A$, by being tagged onto the end of the
DATA statement in line 610. A$ should be redimensioned
accordingly in line 600. The mass of one mole of the new
substances should be placed in B$, via the DATA statement
in line 636, and B$ redimensioned accordingly in 605.

The two FOR/NEXT loops should then be changed in
lines 615 and 635. These are the loops which read the DATA
into the arrays. Line 105 should also be changed so that the
random number `X' is increased to allow for the extra
chemicals.

As it stands, the program only allows for 0.5 to 2.5 times
the mass of one mole, in steps of 0.5 moles. This is sufficient
for third year and C.S.E. Chemistry, but to make it more
difficult, the random number Y in line 110 could be altered.
For example, it steps of 0.1 are needed, the line should read:

Let Y = INT(RND*25)*O.1 + 0.1

Other variables used in this program are:
J — counter for number of problems; set at 10 in line 100

and can be changed if required.
ANS — this stores the correct answer and is generated in

line 150. To avoid problems with numbers not being stored
exactly in the computer, line 180 allows for an error of 0.05
either way.

S ig the Spectrum graphics effectively — Part One

C$ — this is the answer entered by the student via line 160.
It is error—trapped in lines 165 and 170 so that (a) the
computer will not just allow the ENTER key to be pressed
without an answer being entered and (b) the first element of
the answer must be a number (error trapping is discussed in
detail in chapter IX).

SC — holds the score of number of problems correctly
solved. It is incremented only if the pupil answers correctly
in line 230.

90 91

•
CHAPTER SEVEN

Using the Spectrum graphics effectively
Part Two

In this second chapter on the graphics, we will attempt to
answer a question posed by many teachers: `What can you
do with a microcomputer which you can't do with a
blackboard?'

With limited graphic capabilities, a monochrome
computer could rarely compete with a skilled teacher.
However, now that we have the Spectrum, with its high
resolution graphics and colour, there are ways of using it
with which the blackboard could never compete. The most
obvious area in which this claim is true is when a moving
display can impart information in a way which a static
drawing could not do. A wide range of subjects – from a
beating heart, to a four-stroke engine – can be shown in
motion by the Spectrum.

The Nitrogen Cycle
The following program is intended to provide a continuous
display. You have no control over the program, in its
present form, once it begins, although you can easily insert a
PAUSE 0 line to hold the display until a key is pressed at the
points in the program which separate one section from the
next:

10 REH THE NITROGEN CYCLE
20 BORDER 6: PAPER 5: INK 1

100 CLS
105 PRINT INK ';,; AT 1,9; "*3-*-*The
NITROGEN CYCL E * * ,.
110 PRINT AT 3,3; "N2 i79 .r f ai

ï)	
,:	

_
120 PRINT t^7,0;"De-"
125 PRINT AT 5,,^^i "Nitri?iEl4"
130 PRINT AT 7,19,; "Ni t; oget?"
135 PRINT AT 5, 19; "F4 tier s„
14-0 F OR X=1 TO 5: PRINT INK -7;

T	 „*„

4Ikg the Spectrum graphics effectively — Part Two

150 PRINT INK 7; AT 4-3-X , 13; " :
PAUSE 20

155 PRINT AT 10-X ,10; " "
160 PRINT AT 4-4-X , 15; "
165 NEXT X
170 PRINT INK 2; FL ASH 1; 2NVF#R

SE 1; AT 1e.) ; 10; "NITRATES"
180 PRINT AT 1:1,0; "Li g3-:tn i ng- -^
155 PRINT AT 11,17; ";--Fert i ti^

ers-
190 FOR X=1 TO 5: PRINT INK 7.; A

T 10fX . 16; "*"
200 .PAUSE 20: NEXT X
210 FOR X=1 TO S: PRINT AT 1^.^+X15;., „
215 PRINT INK 7; AT 15, 15 ^?ti; " *"
220 PAUSE 20: PRINT AT 15;15 +X ;

ai	 Ai

aas NEXT X
230 PRINT AT 15,21; "Ta k en up "; A

T 15,,21; "by root.s";AT 17,23; "1"
250 PRINT INK 2; INVERSE 1; AT 1

ti ;18; "PLANT PROTEIN-
260 PRINT AT 19,15; "Ea ten to fo

rm„
270 PRINT INK 2; INUERi E 1; AT

1,18; "ANIMAL PROTEIN"
280 ' PRINT AT 19,9; "Dead bodi eç t

290 PRINT AT

295 PAUSE 50
300 PRINT INK 7; AT 15,6; "t"
310 PRINT INK 9; INVERSE 1; AT 1

320 PRINT" INVERSE 1; AT 15, 3; "NH

330 PRINT INK 2; INVERSE 1; AT 1.
Ni tri f ierS"
PRINT INK 7;AT 15,=t "*"
PAUSE 50
PRINT AT 16,5; " "
PRINT INK 3; AT 14,5; 5; „ *"
PAUSE 50
PRINT AT 14-,5; " "
FOR X=1 TO 3: PRINT INK 7; A
X, 13; „*„
PAUSE 60
PRINT AT 14.-X,13; " _ NEXT

365 PAUSE 200
390 IF INKE1' $ =" " THEN GO Tt? 100

As is the case with many Spectrum programs, this excerpt
from the program gives no real indication of how effective it
is when up and running, with colour and animation:

20,3; " Faec e_s .–

3,0;'
335
34-0
34.5
350
355
360
370

T 1ai--
375
380

92 93

Using the Spectrum graphics effectively — Part

****The NITROGEN CYCLE****
N2 (797,-1 of air)

De-	 N i t F o ? tn
r'3 1 t f E i 1e fi s	 Fixers

tog the Spectrum graphics effectively — Part Two

This one is, by contrast, the cartesian equation for a circle:

MEM
Lightning-->

MNBRORMISM

i-- -Fe} ti Li.iei s

Taken_ Up
ELt É aa:t7ç

'	 ^^^ 	
DCâtd Eai^diGé+`+--	 Eaten t o fo r mal^ F3e;',t.=	 è ---

Plotting

The Spectrum is also superb for graphing curves and
functions. Watching a shape unfold is far more dramatic
than just tediously plotting it out on graph paper, or simply
having it drawn fairly roughly on a blackboard.

The first example of this is a brief program showing the
polar equation of a circle in action:

S REH ORRTES2At-f FQURTïON
FOR CIRCLE

10 FOR À--31 TO S i
20 PLOT 125+2;X,85-1-2*SOR

-X*X4-11
30 PLOT 115+2*X,85-2*3OR

-X*X4-1?
40 NEXT X

A program to produce a graph of Y = X T 2 produced this
result (with the listing after the sample run):

i1Oiryc0

(1000

5 REH	 POLRR EQUATION
FOR CIRCLE

10 FOR R =O TO 2*PI STEP PI/50
20 PLOT 1154-5$3*CO5 à=#. 55 +50*51 %#
30 NEXT R

10 REM GRRPH OF Y=X SOLSRRED
1S FOR X=-7 TO 7 STEP s
2 =3 PLOT 5 *_s+120rS}X*X4-1
30 PLOT 12 0 1 2 0?ti:_ ^
40 PLOT 3 t^=*.b, 1 ^t
SO NEXT X

94 95

Using the Spectrum graphics effectively — Part

To show that it is worth experimenting with a program
after it is up and running – as I have advocated several times
in the book, I worked on the scale a little longer, and
produced another version of the program:

10 FOR N=0 TO 90 STEP .5
PLOT 120. 1.62*-N

30 PLOT 30 2 *N . 0
40 NEXT N
50 FOR X=-12 TO 12 STEP .1
60 PLOT 5*X+120, 1±X*X
70. NEXT X

This is it in action:

LEbg the Spectrum graphics effectively – Part Two

PRINT — RECIPROCAL RAPH"
FOR X=1 TO 10 STEP =01
PLOT 10*X.100 °X
NEXT X

Sine Design

This program produces an evolving design based on a sine
wave:

10 REM SINE DESIGN
15 FOR M=1 TO 2
20 FOR N=0 TO 255
30 IF M = 1 THEN PLOT N : 1i 0*S 1N

(N=20)
35 IF M =2 THEN PLOT OVER 1;N,1

30*SIN (N.'2@)
40 NEXT N
50 NEXT M

40

This routine plots a tangent curve:

10 REM TANGENT CURVE
20 FOR X=0 TO 124	 _
30 PLOT 1.5*X.9*TRN tX 6.05? +2

4- 0 NEXT X

And this one a reciprocal graph:

Bouncing Ball

The next program is hard to explain, although the
explanation should make perfect sense once you see it in
motion. You need to imagine that a ball (which shows a
remarkable tendency not to lose energy) is bouncing on the
screen. At precise time intervals, a light flashes, casting a
permanent, sharp shadow on the wall behind the ball. The
ball moves slightly to the right as it bounces, so eventually it

96
97

Using the Spectrum graphics effectively – Part Sp

leaves the screen on the right hand side. The program
produces the pattern left on the wall by the captured
shadows:

10 REM PATTERN LEFT BY
CONSECUTIVE POSITIONS OF
A BOUNCING BALL AT REGULAR

TIME INTERVALS
20 FOR N=0 TO 250 STEP .1
30 PLOT N, Laci*co5 t^
40 NEXT N

If you want to see the ball in motion, add line 35:

20 FOR N=0 TO 250 STEP .1
30 PLOT N i30*GOS N
35 PLOT OVER î_ N . i3O *COS N
40 NEXT N

Scatter Spiral Plot
This program produces what I have called a `scatter spiral
plot'. Using a random step size, it first plots, then `unplots'
(using PLOT OVER !, see line 25) a Catherine-wheel-like
design. You'll understand what I mean when you set it
running. You can leave this program running for a long
time:

glig the Spectrum graphics effectively – Part Two

98 99

Using the Spectrum graphics effectively – Part

5 RE M SOa j T ;°E ;S P ïRRL PL OT
5 LET R =Rf,lD+0.25
7 F OR 5=1 TO 2

1.	 the Spectrum graphics effectively – Part Two

Squars

10 FOR R=PI TO 30{PI STEP R
20 IF 5=1 THEN PLOT 1254- 0 _ 9+Rx-	 10

s I N R ; 5ti +0 . 9 ?FR aEO.•OS R	 2n
- —25 IF 5=2 THEN PLOT OUER 1,125	 ^^ ï`<

4-0.9*A*SIt*i A,8040r91-A*C: 05 A	 40

DRAW
DRAW
c.	 t :DRAW
^=i^°?^f.,s

150 O
 :i	 1 ^ ^.^

—150,0
 _1=0

30 NEXT P
40 NEXT S

Shapes

Now we'll look at ways of making five useful shapes with the
Spectrum. You may well find you can use these shapes to
`dress up' the graphic display of your programs:

10 a_ TRO y E 100 _ 10 0 ,7ç

Oblon g o ltl t=d

10 DRAW 240,0
20 DRAW _! 0,100
30 DRAW —240 »71
40 DRAW 0,-100

1 nn
	

101

Using the Spectrum graphics effectively – Part

sL al i _ i . c L e

Ong the Spectrum graphics effectively – Part Two

If you are dealing with young children, a card to help them
program (as explained in the section of the book on using
the computer in infant school) can be of great help:

i i ? an t7 C^c

10 DRAW 120,150 1 5;`
:= I71 DRAW 12. - 11 ^ 0

DRR__

_ F2	 75,: - ,	 -	 Mgkincd	 SkgPes

CIRCLE	 - use 1,4	 H	 DRAW - use ke y W

C i r c l e 	O

ENrEre,1 m 0CAP S SYnAoL .Yn.eL -75
CAPS C14CLE 	 10 m 0

Trig, q

10	 DAR..., 15-o, ENTEZSY.t..6
1 2 0

20	 DR
tMM^ SYn goL

l 6m ENTER
H tiJ	 I 2 0 ^-,

30	 DRAW Vene.,
235

'Yon., ENTER
m

S ua r e 	 C7

1 0	 DRAW
Earns e ENTER160

20	 DRA W
SYnML /5 0 ENTER .m

30	 DRAN,/
15Y=801-1 t50 I 1Y^u.^.lYl

^ ENTER

4-0
/SYnM.

DR A W	 0 'so ENTER.1

1
5'6.14011

O6 I or,oJ	 C]

50	 D RA W 2 4m
s Y.+wL ENTER

^

2m	 CI RR
m m

ENTERY.+.-1 1
7

30 DRAW
S'en Bo L. cZ m

3 Yn.eL ENTER

4- o	 bRA
SYMBOL Im cb ENTER

v./ '

Text Manipulation
There are a number of `tricks' you can apply to text output
to make it more interesting on the Spectrum, as these next
four routines by David Perry demonstrate.

The first Perry routine turns writing upside-down:
10 INPUT "ENTER A WORD a $: IF

LEN a $::-30 THEN GO -TO 10
15 PRINT AT 0..0.; a $

102
	 103

Using the Spectrum graphics effectively — Part Ti•

20 LET z=1E6: FOR a=167 TO 175
30 FOR n=0 TO (LEN a$*.8_s
40 IF POINT to ,a D =1 THEN PLOT

50 NEXT n: LET z=z -1 : NEXT a

This one allows you to write sideways:

10 INPUT "ENTER P n}CtRD"; a $: IF
LEN a$:•20 THEN GO TO 10

15 PRINT RT G,L••}; a$
20 LET z=0: : F OR a=175 TO 1E8 5TE P -1
30 F OR n = t LEN a$ *8) TO 0 STEP

-1
40 IF POINT (n ; a)=1 THEN PLOT

z .n
50 NEXT n: LET z=z -1 : NEXT a

U. the Spectrum graphics effectively — Part Two

The third routine puts a frame around your words:

10 BORDER 0: PAPER 0: INK 7: Cis
.20 INPUT "WORD? ",a$
30 INPUT "X-Go a' :: INPUT

0.";
40 PRINT AT .{ , u ; a $
SO LET ti = t t LEk a$)-S): LET a=(

Fi*LS] -2• LET b = t8.t-t21-.;3 -2)
E65 PLOT a , b : DRAW C+4,0: DRAW

0,12: DRAW -C-4,0: DRAW Ff!„t 0,-12

And the fourth and final Perry routine allows you to write
in large letters on the screen:

2 INPUT- "Do uo u	 €mr-rit 1ettef .s- i1?	 or ånve-r_e on-ss_ f �1-7...^
3 IF Z. =2 THEN LET Z=0

10 INPUT -Enter your word ino
more than	 four t.ettersx ";PS

20 PRINT RT 0.0_;A$
25 LET L=LEN R$*5-1
30 FOR X=165 TO 175: FOR Y=0 T

U •
40 IF POINT (Y \ J=Z THEN EN PRINT

RT X-166-20,Y;-M-
50 NEXT Y: NEXT X

As you can imagine by looking at this printout, it can be
very effective:

Character Generator
Finally, in this chapter, we have an outstanding character
generator program, again written by David Perry, which
should make your job of producing the most effective
displays simpler than it would otherwise be.

The program has a large number of commands. You move
the cursor with the 5, 6, 7 and 8 keys (in the direction of the
arrows above those keys). Key 0 fills in the block the cursor
is over, or `empties' an already filled block.

You can pick up, and alter characters at the press of a key,
invert the character presently on the grid and SAVE the
characters on tape for your own programs.

When you run it, you'll see the program contains full
details of the ways in which it can be used, along with clear
instructions on which keys to use.

10 REM t,`.i-iRlr:;=3i:.TE i=: GENERRTOR
DRUID PERRY 1g83

20 BORDER 1: PRPER tL^ : INK 7: B
RIGHT 1: CLS

104 105

Using the Spectrum graphics effectively — Part 41

30 PRINT " R B C D E F G H I ,..;
K L M F-x O P"

4"0 PRINT '• * M k Ni a M X 0 0 A
; €i;€ ft ..

50 PRINT BRIGHT 8: INK s;" EI
NARY	 INt,.)ERSE	 NORMAL-

60 PRINT "012345678	 0123456
78 012345678"

70 DIM z(8,8)
80 FOR n=1 Tt.? 8
90 PRINT n; INK 2;"00000000

"; INK 7;n; INK S; "NOmMommaW " _
INK	 ^^_

1100 NEXT n
110 C3 GO SUB B 630
120 INPUT "X-F1:}c i s (1 tCt 8)".g:

IF b 8 OR b11 ".å. THEN GO TO 120
1301 INPUT "Y	 .L1 trt 17-'1 1 :'.P •

IF a>8 OR a<1 THEN GO 70 130
14-0 PRINT AT a+3, b; INK 4; „ i:"; le

T a+3, b+13; ,. X"; RT a+3, b+23; .,X..
150 LET k $=It•åKE'cr $: IF k$_"" THE

N GO TO 150
160 IF (k$="0" AND z (a ,b) _0) TH

EN LET ; (a, b) =1: GO TO 180
170 IF (k$_"0" AND z (a , b) =:4i) TH

EN LET z (a , b) =^.̂
180 IF z (a , b) =0 THEN PRINT PT A

+3,8' INK 2; .. 0 „ ;^PT A+3 ,B+13; INK5; " ";AT R+3,54-23; PAPER sy _ ., ,.
190 IF z (a , b) =1 THEN PRINT RT a

+3,b; INK 7; ..1.,; flT a+3,6+13; PAP
ER 0;" ";RT a+:3, b+2:3; INK 3;
200 LET a=a+(1NKEY$="6" AND a€8

) ---(INKEy$="7" AND a>1)
210 LET b=b+ (INKE'c`'$="3" AND b‹8

) -- (INKESF $="5" AND b>1)
220 IF INKEY$="p" THEN COPY
230 IF INKEY $="5 " THEN G O SUB S

90
240 IF INI*.EY$="g" -THEN GO 70 10

50
250 IF It•lKEY$=" i " THEN GO TO 96
260 IF INk:E.Y $ =" r " THEN GO TO 3-3

0
270 IF INKE1l $=">; " THEN GO TO 12

0
280 IF IS•iKE'Sf $ ='° c " THEN GO SUB 3

40
290 IF INKE'y'$="d" THEN GO SUB 1

060
300 IF INK.E'r $= ".a " THEN GO SUB 7

40
310 IF INKEY$="e" THEN GO SUB 9

20
320 GO TO 140 0
330 CLS . RUN 30
340 LET z$="": INPUT "Letter fo

r character? ";D$: IF d$<"a" OR
d $ > "u " THEN GO TO 340

106

(ping the Spectrum graphics effectively — Part Two

350 DIM a$ f.S.:..?9)
350 FOR x=1 To 8
370 FOR y=1 TO 8
380 LET a $ (x , y) =SCREEN $ (x +3 , y)
390 NEXT y: NEXT X
4.00 FOR =1 TO 8
410 LET z$=""
420 FOR y=1 70 8 r	 1430 LET z$=z$+a$(X,14)
440 NEXT y
4.50 LET n o =0
4-60 IF z$41)="1" THEN LET no =no o

+128
470 IF z$(2)="1" THEN LET no=no

64
4.80 IF z$(3)="1" THEN LET no =no

+32
4.90 IF z 9$ (4.) ="3" THEN LET rco=ro

+15 5
500 IF z$(5)="1" THEN LET no =no

+8
510 IF z$(6)="1" THEN LET rrct=rrt

+4
520 IF z$(7)="1" THEN LET no=no

+2
530 IF z$05)="1" THEN LET rrc =nct

+1
540 POKE USR d$+x-1,no
550 PRINT AT x+3,9; FLASH 1; no ;
FLASH 0; (" " AND no €=99)
560 NEXT :7:
570 PRINT AT 1,0;"	 M _

XO C3 V A-
580 RETURN
590 CLS : PRINT AT 20,0;" CHEC

K LEADS , START RECORDER "
600 INPUT "NAME?" , A$
610 SAVE A$CODE U5R "R",168
620 RUN
630 PRINT AT 13, 1; "I=INVERT CHA

RACTER"
640 INK 6: PRINT AT 14 , 1 ; "5 =5RU

E CHARACTERS"
650 PRINT AT 12,1; "0=FILL/EMPTY
BLOCK"
650 PRINT AT 15, 1; "P=PRINTER CO.

PY	 7 . .
670 PRINT AT 18,1;"R=START AGRI

N 5X8"
680 PRINT AT 17, 1; "C=DEF ENE CHA

RACTER	 8"
890 PRINT AT 13, 1; "X=CHANGE CO-

ORDINATES"
700 PRINT AT 19, 1; "D=INPUT DECI

MAL DATA"
710 PRINT AT 20,1; "N=PICK UP A

CHARACTER"
720 PRINT AT 21,1; "E=ERR:=-E R CH

ARA- CTER"
730 RETURN
740 REM pick up

107

^ El

Using the Spectrum graphics effectively – Part 70
750 INPUT ""Character to picK Up
A to U"; r$: IF r$?' i.. OR /-$"a"
THEN GO TO 750
760 LET r$=1-$(1 TO 1)
770 FOR 0=0 TO 7
780 LET- ...50 =REEK .f1 LSR . r m ,^ y t
79fc̀+ LET 1=128
800 FOR x=0 TO 7
810 LET t=INT ts/t)	

INK PRINT AT y4-4,x+1;^NK 2;(-0
" ANC, NOT t=1) ; INK. 7; (-1- AND N
OT t<>1)
880 PRINT AT y+4 ,>t+14; INK 5; ('°

ia" ANC? NOT t=1); PAPER 0; (" " AN
D E NOT t<>1)

640 PRINT AT y +4 , x +_2^-; PAPER t0̂;
(- ..AND ^`•# ^l NOT t=1); INK K 3; C"" RN

D NOT t<>1)
645 IF SCREEN$ (y+4 ; 3{: +1) -'"0" TH

EN LET z (y+1,>4+1) =O
846 IF SCREENJ $ (y'+r3. , >: +i) _" 1'" TH

EN LET z (y+1,x+ï) =i.
850 LET 1 -1 -t * l
850 LET 1=1/2
370 0 NEXT x: NEXT y
680 FOR n=1 TO 8: PRINT AT n+3,

g;" "	 •	 NEXT n
890 i)`1Pii?'	 .L-i t r St :,, R'

IF b>8 OR b<1 THEN GO 70 '.i.-az
900 INPUT "Y-Axis (1 to 8)",R:

IF a>8 OR a<1 THEN G O TO 130
910 RETURN
920 INPUT ""Character to ERASE

- ;c1$: IF d$ •. 'a" OR. d$> "'u"" THEN G
O TO 920

930 FOR f=0 TO 7: POKE USR c1 $+ F
;O: NEXT bC T f	 ^ ^^
940 PRINT AT 1,0;" 0 A ^.

:-^ (^ 0 ^+ C ^ it 1 : E P,,.
950 RETURN
950 FOR u=1 TO 8
970 FOR r"=1 TO 8
980 IF SCPEEN$ (u+8, f) ="t^^" THEN.
GO TO 1010
990 LET .i (u , f) =0 : PRINT AT u+3, ,

f; INK. 2; "0"; AT u+8, f+13; INK 5;
"M" ;RT AT u +3 . f +2,8 : PAPER 0;-
1004a GO TO . :1ßc20.
1010 LET z (u, f) =1: PRINT AT ta+8,
f; INK .	 r.^.E^r.:`"..:3...;^.T _ ^^.

k
a^.. F.^3 ^.: _ ^;^:,PF

r^a; " ";RT u+8 , f+28; INK 3;"-a-
1020 NEXT f
1050 NEXT u
1040 GO TO 120
1050 CLS • PRINT "(0f46„": PRINT '"N
ge" • PRINT -X00-: PAUSE 0: CLS

RUN
1060 INPUT "LETTER ? -,1$: FOR f
=0 TO 7: INPUT " E'e w s s;s a {_..-". _ Pe

` -r iàSR i.$+f,s: NEXT f
1070 PRINT AT 1,0;" 4g, a	 1 g
X 0 O U C 3	 A0: RETi_'Rt'.

leg the Spectrum graphics effectively – Part Two

0
100000000
200131100
301111111
411111000	 4
511110000	 5
611111000

500313300	 6
0 =F ILL r Eè^4PT^` BLOCK
I=INt.^ERT CHARACTER
S=SA^aE CHARACTERS
P=PRINTER COP

	

R=STRRT f=iOAIh.!	 5X8
i1=C}EFIttilE CHARACTER	 r-
X=CHRNGE CO-ORDINATES
D = INPUT DECIMAL DATA
f; =P ICK UP A CHARACTER
E=ERRa..r .A _CNRPF1r;•-rFP

 5 CD E F C H I L1 è^ L t`f ;-^t ^'
^ ^ ^ ^1 L•7 X^^ O^•• C 3^

S INAR'^'	 IN(.^ER^^E	 NORMAL
^_' ;^EE^^	 022345E78 022345678

108
	 109

•
CHAPTER EIGHT

Using the Spectrum for English and Other
Languages

The computer is a little more limited in this area than in the
maths one, although with care and patience, you can
develop programs which will be of benefit.

Spelling Program

I'll start with a spelling program which can also be used as a
foreign language drill program. This program stores 12
commonly misspelled words, and gives 10 questions on
them. Once you have the program running, you simply need
to alter the DATA statements (from line 250) to change the
program.

To use it for foreign language drill, simply change the line
which begins "Please choose the correct spelling for ..."
(line 110) to something like "Please enter the French word
for ...".

Here is the program in action:

Please choose the correct
spellin g from the alternatives
and type it in tin capital
letters)
ABSENSE

ABSCENSE

ABSENCE

Your spelling was ABSENCE

Well done, ABSENCE
is correct

You have 1 right
out of I

Please stand by....

Usiehe Spectrum for English and Other- Languages

Please choose the correct
spellin g from the alternatives
and ty pe it in tin capital
letters)

IRREPARABLE

IREPARABLE

IRRFiPERiaBLE

Your spelling was IRREPERABLE
but t that is wrong.

The correct spelling is
1R R EP i-i R R Ei L r=

You have 1 right
out of 2

Please stand by....

Please choose the correct
spe l ling f rom_ the a-1 te r-n-a_ti ves
and type it in (in cap ta
Letters)
l3NDERATE

UNDERRATE

LiNI?ERAIT

Your spelling was UNDERRATE

iJe l l done, UNDERRATE
is correct

You have 2 right
out of 3

Please stand by..

And this is the listing for it:

10 REM SPELLING
15 RANDOMIZE
20 LET SCORE =0
25 DIM F$(11,7)
30 FOR H=1 TO 10
4.0 RESTORE 250+i0fINT- iRND-9t
60 READ AS
65 FOR T=1 TO H

Using the Spectrum for English and Other Lweiges

55 IF RIVD>e5 Tl-iEf•! IF F$tT1 f TO
=R$ t TO 7) THEN GO TO 4-0

70 NEXT T
75 LET F$ tH? =A$
80 RED B$
90 RERD C'-$

100 RERD D$
110 PRINT 'Ptease choose the c0

rrect sPett,nq from the at
ter nat, :=es and t qpe it in fin c
api tat	 Letters)"
120 PRINT 'B$
130 PRINT 'C$
140 PRINT 'D$
150 INPUT E$
155 PRINT '"'rYour =-p E t t i €? q was "

.E$
150 IF E$=R$ THEN PRINT --Wett

Jone, ,. ;E$,-is correct": LET SC:O
nE =SCO.r-^E +1

170 IF E$ < >A$ THEN PRINT "but t
hat is èisronci''' '''T.1-,e correct spe
tting is "r:116
180 IF SCOR.E>0	 _PRINT "-Yo ..ti,o

u have ..;SC.ORE;.. r3ght ,..,. z̀ut of
H

190 PRINT ' ' FLASH 1; "Ptease st
and by...."
195 INPUT a$: IF a$4>"" THEN CO

PY
200 PAUSE 200
210 CLS
220 NEXT H
230 PRINT " —You manaed

et "; St~.ORE"'icEi^rd c[^rrect Le,^ to _ p
240 STOP
250 DATA "ABSENCE .. > .. P.BSENSE ,. , ,.A

55CEN:.̂E ABS ENt•E ..
250 DATA "BELIELLEif'° , "BELIEIiED" ,

"EsELE Il 1 ED' • . ".BEIL IEU.ED"
27L DATA "C'-OLLEAL LiES- . "COLERiâUE5. . , C:OLLER0UE5 .. , ..t•OLLERL4E.,..
2$i! DATA "COMPARATIVE" ,k "i~•OkkPARA

TIUE-_ "C:O1`tPAR.ITILt E", "OOHPt=tRrTRVE

290 DATA "C:ORF,'OBOF,`RTE" , "CC ► RROBO
t;dRATE" , "OOR0B0}zATE" , "CORR0B0RATE

300 DATA " IRREPF#RRBLE" , " IRREPAR
ABLE" _ "IREfiARFiBLE" , "IRRAPERABLE„

31t^1 DATA "REPLAt_•EtR,BL.E- , >.REPLRt'•A
BLE" ,, "REPLAtr•ERBL.E" , "REPLRL•IBLE"

320 DATaR "PRRRL.LEL" , "PARALELL" ,
"PARF'iLLEL" , "PF3RALEL"

330 C?RTR " UNDERRA T E--, "U,sl£FERATE "
' • t3NDEfik.t-1TE" , ' UNitERRIT='
340 i?tRTi-é "UNNECESSRfiY ", -UNEtiESS

RRV' , "UNNECCES Sr3RY " "UN,N►EC EL SFiRY
350 D TA "t, ► DOLLE#•!.. , "WOO LEN" , "LID

OLLEN" "1,I00LIN"

Use the Spectrum for English and Other Languages

350 DRTR "DI CREP ;ANC --, "LvFS;tCRE
PRNCY" , "DISCREPENO.Y" , "L"I3t REPiRNC

The words used in the DATA statements were chosen
from those words which are most commonly misspelled.
Here is a list of several such words, from which you can
create other spelling tests:

absence accessible accommodate
accommodation achieved acknowledge
acquainted acquiesce acquiescence
addresses aerial aggravate
aggregate agreeable analysis
analyses ancillary apparent
believed beneficial budgeted
category ceiling chaos choice
committee competent connoisseur
courtesy cursory deceive
definite dissatisfied embarrassed
exigency expenses extremely
fulfilment gauge grievance
guardian harassed independent
instalment irreparable
knowledge liaison maintenance
misspelled naive negotiate
niece noticeable omitted
parallel permanent preceding
preliminary professor
proprietary psychology
recommend regrettable replaceable
scarcely statutory supersede
tendency twelfth underrate
usually valuable withhold

If you want to modify this program for younger students,
for whom the most-commonly misspelled words would be
too difficult, you can replace them with words from this list
selected from the most frequently used words in English:

which her had from they their
has were been will there who when
what your more would them some
than may upon its out into our
these like shall great now such
should other only any then can

112
	 113

Using the Spectrum for English and Other Lamages

about those made well old must
said time even new could very
much own might first after yet

Anagrams
The next program in this chapter is an ANAGRAM one
written by Derek Cook. It contains full instructions, and is
designed for use by children in the six to nine years age
group:

200 PPPER 0 : C:-	 P 4PET:. 2. YP•^i^

t
210 PRINT RT 10,1; - D o you 4n o (tr

about ANAGptiFfMS7"
220 PAUSE 100: C•L5
230 BORDER 1: PAPER 7: INK 0: C

L5
300 PRINT "Yout ak e a word:"
310 FOR R a=1 TO 6
315 REAL' a . a $
320 INK a: PRINT AT 5: 12 +a ; a $.E.
330DR-tT;-i

	, - - L • ^ ••^

,5,-L",6,-T"
340 NEXT
345 PAUSE 100
350 INK 0: PRINT AT 3,0; -and m i

x the letters up:-
36 0 RESTORE 400
370 FOR 4 = 1 TO 6
3E+0 READ b•, b $
390 INK b: BEEP .1,Z: PRINT AT

Eti 1 ^2+i b $
L^05 PAUSE 50	 3 _

^	
—

400400 L>FiTF^	 ^Lf_.^ ;} .. L :. A	 .,J..J^f	 f
l L f ,.E•

41 0 NEXT z
420 RESTORE 450
430 FOR y=1 TO 6
435 READ c , c $
440 INK c: BEEP . 1 , y : PRINT AT

t' 12 +4;c $
44•5 PRL i5 E 5o
450 DATA 5	 .,	 ., ..

, L `•, ;à. ^U.,^31^ JE,,..T
.. , 1 , _, R .. .` „E.,

^4.E C NE:^(T ` E?
470 RESTORE 500
475 FOR x=1 TO E•
480 READ d , d $
490 INK d: BEEP = 1;`€: PRINT AT

S, 12 -rzt; d$
500 DATA F s 1.-8-,4,"13 - ,3, - 5 - , 6 , -T

510 NEXT x
512 PR INT AT 12,3; "to m ake othe

r words "
5 15 PAUSE 200: OLS : BORDER 1:

PAPER 6: INK 2

Use the Spectrum for English and Other Languages

520 PRINT "The _ o rr?pi!teï c an m3ke ana g rams	 ; o .- Jo tr but t most of^e	 r ,	 C	 ^	 _-^ h tlf ^^ 1 i ^^ f j t_' I i ^ ^ % ^ G words- Î d525 PRINT i--f -} 5, i; .. p c% r instance:

530 FLASH 1: PRINT HT 7.13; "STF:ULE"
535 FLASH 0: PRINT RT G, ^r; .'I ^ there a SUTLER? Look it up inthedictionary!"
540 PRINT RT 11,05 -Nonsense word s c a n be fU n; rr7a}:e up g our ownmeanings for them. If you wantme t o make some	 anagrams f o ryou,press ENTER-
550 INPUT .3$
5b`. CL S
600 RA fidDONiZ E
505 PAPER 0: CILS : PAPER 2: INKE
510 INPUT "Type your ler o r d, t h e nPre_-~̂ ENTER"; a$
620L E T i =LcN .a$
630 DIN h$(2, t)
540 FOR n=1 TO 40
650 FOR c=1 TO 1
550 LET b$ (3, i)=a $(c iE ^^C'. LET b$(^i ,c ? _'_t.."
E•^ î- NEXT c

FOR =j• T%. i
700 LET r =ï:-àT (Rràr+N- t : f-17 1 0 IF b•$ (2, r) =..0.. THEN GO TO 700
720 LET b$ (2, r) =••0"
730 PRI NT b,a._^ t _,
740 NP---XT
?=0 PRINT
750 NEXT fi
770 E=CtRL6ER 1: PAPER 0: INK 7: FLASH 1: PRINT -press ENTER for in_ tructiorrs'•
?50 FLASH 0: INPUT 1$790 IF i $ =„i „ THEN GO TO 800
800 CL5 : BORDEr=? 3: PAPER 5: It*!K 0: PRINT ^i4 - ÿ - ..^ _. t -=' _ ,.
81^.=r PRINT HT 7,05-1 t or another40 ana g rams of th ï_a ?: o word
of another word 	 for anagram

-bye"
	 3 t o sa g G oo d

520 INP UT p

K 5:
840
850

830

PRINT AT 11, 12; "dogo-ybe`•
CLS : BORDER 4: PAPER 3: IN

IF p=1 'THEN GO TO 520IF p=2 THEN GO TO 505

Faster Reading
The final program in this chapter, written by Gordon

115

Using the Spectrum for English and Other Lavages

Armitt, is designed to aid in developing faster reading
speeds. Here is the program in action:

NOW ENTER THE LETTERS YOU _Rte

Nu Letters w ere Rit#E

Yours were REUO

Not you are wrong
You Lose 10 poiTets1
You have -10 points

Stand by for a new test

NOW ^ ENTER THE LETTERS TERS YOU ER[^

My letter{ were TS0E-.

You+°s were T5OE

Yes, you are right

You score 10 points!
'You have 40 points

Stand by for a new test

NOU ENTER ER THE LETTERS YOU SAW

My ty Letters were V...tFC

Yours L! r s were l! J F'C

Yes, you are right
You score 10 points!

You have 50 points
YOU'VE PASSED WITH FLYING
COLOURS!

Use the Spectrum for English and Other Languages

TYPE IN THE NUMBERS YOU SAW

411E	 41154

You are 202mg and so you
Lose gg points

Your score is —le

STRftiiC? BY FOR R NEW TEST

And this is the listing for it:

10 PRINT " PRRCTICE FOR FASTE
R REREING"

1E PRINT '`
20 LET Id=0
30 PRINT RT 10 s 0 ,r "PLERSE INDIC

RTE IF YOU WRNT	 NUMBERS
OR LETTERS" ; RT 15.5.-ENTER N OR
L'
40 INPUT DS-
50 INPUT "ENTER R NUMBER BETWE

EN 1 RND 9 FOR THE SP•EEL? OF YOU
R TEST.	 1 IS THE FASTEST ";
^

55 IF Z<1 OR Z>9 9 THEN GO TO 50
70 IF D$="L' THEN GO TO 600

210 PRUSE	 GLS : FRLT5L 10
230 LET M=INT tRNC>* t tl0t 5) ,a)
232 LET P=INT (RNia*20)
234 LET O=INT tRND#20?
240 PRINT RT P, OF 3`f
250 PRUSE 25*2
260 CLS
270 PRINT "-TYPE IN THE NUMBER

5 YOU SAW-
280 INPUT R
290 PRINT RT 10, O; R; TRB 10;M
300 IF R=M THEN LET l{=4?+20: PRI

NT " INK 2,. PRPER S. FLR5t--1 1;"Y
ou are correct and you score	 .o
' INVERSE 1.: 1L^.: INVERSE O< " poi P?
3s..
310 IF R < ?M THEN LET V=V-10: RRINT ' ' INK 1; PAPER c 7_. FLR5H---1 _ •You are " à IN-VERSE 1; "WRONG; ; INVERSE 0;" and so you" .. tose- "` INUERSE 1=10. INVERSE 0;" pointc-.,
370 PRINT RT 18,0; "Your scor e a`+ e

U
3S^ IF 1 .1 =-30 THEN PRINT "YOU'VEHIT ROCK BOTTOM": . STOP

116 117

Using the Spectrum for English and Other Laçages

355 IF 10=50 THEN PRINT "YOU" OE
PRSSED WITH FLYING" _ "COLOURS` " :
STOP

0	 —STAND BY FOR R NEM390 PRINT -
TEST"

400 PRUSE 300
410 GO TO 210

500 RE H LETTERS
510 PRUSE 140: GLS : PPLJSE 10
520 LET R$=CHR$ t INT tRNDae261 +5

• +CHR$ (INT iRND*26? +553 +OHR$
INT i RND *26? -F55? +Gi-iR$ t 1:t+IT i RND *
2. 6 3 +65) ?

630 LET P=INT (RND*20)
54-0 LET O=INT (RND*20)
550 PRINT RT P ; R$
550 PRLaSE 25*.:
670 CLS
550 PRINT "NOW ENTER THE LETTER

5 'YOU SAàrd.,
590 INPUT 5$
700 IF CODE 5$ <65 OR CODE B$? a0
OR LEN B$i >4 THEN GO TO 697
710 PRINT r..11Q	 t te r_ we r e ";

1:4$' : ..Yoc}rS were .. . F$
720 IF R$=L$ THEN LET V=V+10: P

RINT : : ..^C^S : you are r i ght Ÿ : : „Yo
u score "; FLRSH 1_ 10s FLRSH 0; ..
points!"
730 IF R$<>16$ THEN LET l? =V-10:.. .^

PRINT —No, wou are a ►̂ ror? g ..	> o
t^ LOSE "; FLASH 1; 30 FLRSH 0;"
POintsi ,.

	r	 ,,.
735 PRINT —You h^^^^ "; BRIGHT

1;k.1; 4.1 ; BRIGHT 0;" points "
740 IF k.)=-30 THEN PRINT "Y OLL` VE
HIT ROCK BOTTOM! °' . STOP
750 IF V=50 THEN PRINT "YOU' VE

PASSED WITH ITH FLYING" ; "COLOURS! "
ST OP
770 PRINT "-Stand bu for a n ew
test"
O00 GO TO 530

•
CHAPTER NINE

Error trapping

Good computer programs contain mug-traps. Mug-traps are
devices inserted in programs after inputs, designed to reject
the entry of inappropriate data.

Many computer programs will crash if through operator
error, or malevolence, the wrong kind of information is
entered. For example, if a program expects a numeric input,
and it is given a letter which has not been previously
assigned as a variable name, the Spectrum will stop with a
'variable not found' report message.

There is an old saying about how difficult it is to make
things foolproof 'because fools are so resourceful'.
Unfortunately, this is the way the world is made. No matter
how carefully you try to put mug-traps into your programs,
you'll probably find some student manages to find a way to
make the program crash.

The 'Molecular weight calculations' program in the first
graphics chapter of this book contains a good example of
error-trapping in lines 160 through to 176. Here is the
relevant section:

150 LET ANS=VAL iE$ (X) 1 *Y
160 INPUT 0$
165 IF C$	 THEN GO TO- 150170 IF CODE C$<4-9 OR CODE O$_55
THEN GO TO 160
150 IF VRL C$ 	 — 0.05 OR VRL
--$ ERNS + 0.05 THEN GO TO 250

200 CLS

Although the computer wants, eventually, a numerical
answer, it asks for a string. As you learned earlier in the
book, the Spectrum can convert a string into its numerical
equivalent by use of the function VAL. It is easier to reject
string input than numeric input. Whereas entering a letter
when numerical input is expected will either cause the
computer to crash immediately, or to carry on with what

119

^ -8 °= "_ 0F	 - --
^ ^

L . ït i= 18
1A =0

_3?,p g nu take 3

.1 ^
15

Error trapping

might well be a totally arbitrary value, a string input can be
carefully checked before it is accepted.

In the program fragment printed above, line 165 rejects
any `non-input'. That is, if ENTER is just pressed without
an answer being entered, line 165 will immediately go back
to 160 for a new answer. The next line, 170, checks the
CODE of the entered string, and if this number does not lie
between 49 (the CODE of `1') and 58, (the code of `9') the
input is rejected. This, at least, rejects input which does not
start with a number. It does not, and this is where the
resourcefulness of fools' comes into play, reject input of the
form '12z' or `9tricky l'.

Matchsticks
The next program — Matchsticks — is a variation on the old
Nim games, in which players take it in turn to take matches
away from a pile of them, with a limit on how many can be
taken each time, with the loser being the player who is
forced to take the last one.

It is included in this chapter as it contains some traps to
catch bad input from the player. It is a little more difficult to
crash this program than it is to crash the Molecular Weights
one.

Enter it, and run it a few times, and then we'll discuss
ways of making the program more robust:

Matchsticks

The most QOU can take

1'1_4_ take

10 REM Matchsticks
20 RANDOMIZE
_0 L:LS
40 LET M=0

E .

Error trapping

^»:^ ^`_,T K.;"

NEST
170 GO SUB 320
180 INPUT "How mang do you ^ ^ ^Ci i-- *̀ . tto take	 ";E$
1SS IF LEN_ t	 T=$?1. THEM G^ a- 1S0

`iE-- 	 E $< •: 1 r t_OR- E$ °”,:3 _. THEN GO
TG 180
187 LET E =l'F?L_E^_

IF E>H 6 ^ THEN ^ i`3 PRINT "You cà L.^ cam= r_ _t _.^6=.='_t?:,3? .^.::__-^_` - LO TO 3_80-l`'.^F IF ^. 	 i ^^^^ PRINT `	 __ ar`_	 ^`	 ;	 i`^	 _ r ^	 `^i^a L à 	 „ .
e 	 ' that i s'n a si^i te ' t": GO TO 18^

^ ~ PRINT . PRINT	 ^^i^ ^`^ T	 T` `L^iC . }1^^L' take

26 LET Z_ -E
2 ,^e^ GO ^t_;6=i^^^^

 y CLS 0 IF Z :1 THEN L-Li : PRINT

	

took
	 S _ -3: AT^ ; ^ . "You i. t£ i.F : ` the. t L a s7- L one " ,"-=-0 _

': the ti is 5 i F Fs t F . _ PRINT - PRINTt= ^ ^ t_'T
v

6"Thanks for the g ame": - e
- ài	

.- ti	
T	 T	

STOP250 LET iå = ^ - .i - ...i 3`^T ^ ^ -` - ^ i _;' i 6^ $:3.. ^6-:-^1 ? -Sï'^T trits9t=:r.^ f ^ ?€`^T t3.`P^Drt,=)255 IF 0< 1 OR 0>H THEN GO TO?
270 PRINT . PRINT ''I' t t take

275 GO "ŜUB 350^ ^^L 	 ET = --0
2-t-3 IF Z < 'I THEN CLS	 PRINT AT- ,0; "I took the last one" s {.è
ace the e w i e^ e^ e^ :"^ PRINT -s FLASH .. _	 --
Ç-L3^Ÿ ^tià i. `^?^ t done" 	 STOPTh -: i^

'?= ^ - -	 ^'^ t :.---	 '	 cwt - ^_ 	 ^-Li ixt :^é. à _ .___ __
=50 -=R R=I TU 100.-	 R

You'll see when you run it that each new screen includes
the message "The most you can take is ...". It is worth
reminding program users of any limits which exist on their
input. And it does not matter if they are warned of this limit
several times during the running of a program. So line 110

s •
LET Z=^1̂P(?^^T àR3åi-?*Es? +1670I . .=TIlVe l_/tà =•i THEN LET Z

55 LET .._3+ It-tT 0-1:14D

i15 i= PRINT AT 3 r 10: '`ML-t ch_ ticks"
?-à_F PRINT AT E0;"The mo=t you

can take i=	 FLASHI; :'-{- ='(-:1^ O 5^^t= 320
y THEN130 1i 	>0 e :-?E?^Ÿ PRINT aå i

ou took ^ 	 ^L.^^t?	 Eg F Lrs,i-H=--- I
	 `^took
	 _ FLASH- ;PRINTiz

140 FOR =i —:1 T=^ ^ - ^ E-	 _	 t=^=- 03^ *A
 I= R_:=: =8

120

Error trapping

prints up this message every time, thus, hopefully, stopping
wrong input before it begins.

Line 180 asks for the input from the player as a string. The
computer knows (because the game is set up in this way) that
the input must be a single digit, between 1 and H (which is
assigned in line 80):Line 185 checks the length of the entered
string. If it is greater than one (as it would be if 2RD2 or
3CPO was entered) this input would be rejected (although,
as we saw above, it would have got past the previous
program mentioned). Having passed this hurdle, the entered
string is checked for `size'. Sinclair BASIC allows
comparisons of `greater than' and `less than' to be made
between strings. If the string is less than `1' or greater than
`9' the input will be rejected. This effectively gets rid of all
non-numeric input, as it will also reject a null-string (which
you get when you simply press ENTER without previously
entering anything). It will also reject a press from the
SPACE/BREAK key.

Finally, in line 190 (after E$ has been turned into a
numeric variable, E, by line 187) the value of the entered
number is checked against the upper limit, H, to see if the
entered number is acceptable.

While the program is far from perfect it does demonstrate
the degree of robustness which you should aim at in
developing programs for school use. Once you have your
program running, and have made its display and
`conversation' as pleasant as possible, you may well wish to
have a look at all the inputs, and make sure they have at
least some degree of robustness, so a mistake (or a wilfully
wrong entry) does not bring the whole lesson to an abrupt
halt.

•
CHAPTER TEN

Multiple-choice quiz programs

There is a tendency to look upon the Spectrum and other
microcomputers in schools only in the light of what they can
do which is now done in another way. It takes a mental jump
to look for things which are not being done in your class
right now, but which can be implemented relatively easily,
now that you have a Spectrum on hand.

Multiple-choice quiz programs are among the easiest to
write, and because of this, predominate in commercially
available software. As well, multiple-choice programs are
those which are most generally criticised, as being a waste of
computer potential. But this need not be the case.

Much software of this type does deserve criticism, because
it is too limited, and perhaps not closely enough linked with
class material. We have a major program in this chapter –
Multiple Choice Master – which provides you with a
program which will generate up to 100 questions (on a 48K
Spectrum, with a maximum of 15 on the 16K machine), each
of which can support up to six different answers to choose
from.

As well, the number of answers to choose from can
change from question to question. The program has been
deliberately written to be as flexible as possible, to allow you
to use it in whichever subjects you choose. The program
supports a full sentence question in each case, thus getting
around one deficiency of many published programs in which
the `question' is reduced to 'Synonym for ...?'.

This program has been proved very useful in practice, as it
can be used for practically any subject, and for students of
any age. It is self-prompting, and you should have little
trouble in using it, and adapting it where needed, for your
own subjects. The screen displays during creation of a test
are designed to lead through the steps required as you can
see from these samples:

122
	 123

Multiple-choice quiz programs

OUESTION NO. a

• Multiple-choice quiz programs

Once you have entered all your questions, you can check
the program. Again, this feature is self-prompting, as you
can see:

PROGR A M GHECK

OUEST ION NO. 1
WHAT IS THE CAPIT-AL	 AUSTRALIA
.A MELBOURNE
BSYDN'f•

(raCANOERRA
CORRECT CHOICE=C

Press 1 71.11L1, 	 TO CONTINUE.OR
• ‘-`

Finally, when a student sits down to use the program, the
screen display is as follows, so there is little chance of error:

HELLO, TIM I AM GOING
TO ASK YOU SOMEE OUESTIONS AND
I WANT YOU TO CHOOSE THE
ANSWER WHICH YOU THINK IS
CORRECT. AND PRESS THE
SHOWN NEXT TO ITPress pma-AL

WORLD CAPITALE'

HOU MANY 0 •JEETION -=,-' :-;A se.. 100Y

ENTER aUE5TION5 ANSt4EAS AND THE
CORRECT CHOICE ..-L!S RECUEETED ANY
ERRORS HAY BE EDITED LATER.

MAXIMUM LENGTHS = 50 CHARACTERS
PER GUESTION, AND •-=.:0 CHARACTERS
PER ANSOER.
PrEaS

:QUESTION NO. 1

WI. OF CHOICES--? tMAX- E.)
WHAT IS -THE 	tquSTRALTA
ANSWER(A)MELOOURNE-

ANSWERtBSYDNEY
ANSWER(C)CANBEARA

CORRECT CHOICE?

NO. OF CHOICES? '-,11RX..- 5)
NAME THE CAPITAL OF ROMANIA

ANSUER(A)5UCHAREST

ANSWER(F0MADRID-
COP	 r: (OICET

QUESTION NO. 3

NO.	 OF CHOICES?	 tMAX. 6)
WHAT IS UGANDA'S CAPITAL cRt

tA
ANSWERIHANOI
ANSWERCIKABUI__
CORRECT CHOICE_T

.1=D?

Here is the complete listing of the program:

5 REM MULTIPLE CHOICE MASTER
1 0 LET M=I
20 PRINT -TITLE? (MAX. 20 CHR$

)-
30 INPUT A$
40 LET A=LEN A5+1
50 LET 8=((30-A)s2)
50 GO SUB 1130
70 PRINT - HOW MANY iDUESTIONS?

(MAX.	 100)-
80 INPUT E: PRINT E
go DIM 6$(E,50)lee DIM C$CE,50)

110 DIM D$(E,50)
120 DIM E$iE,50)
130 DIM F$AE,:501
140 DIM G*(E,-=:;01
150 DIM H$(E501
150 DIM J$(E,50:t
170 DIM FEI
180 PRINT '-ENTER QUESTIONS.ANS

WERS AND THE CORRECT CHOICE AS R

124 125

•
EQUESTED,RNY ERRORS MAY BE EDITE
D LATER."

190 PRINT '"MAXIMUM LENGTHS = 5
O CHARACTERS PER QUESTION, AND 5
O CHARACTERS PER ANSWER."

200 00 SUB 1210-
210 INPUT 2-:$: CLS
220 FOR D=I TO E
230 PRINT "QUESTION NO. ";D
260 PRINT ""NO. OF CHOICES? IM

AX. 6)"
270 INPUT F(D): PRINT FED)
280 PRINT AT 4,0;"ENTER OUESTIO

N (MAX. 50 CHARS)"
290 INPUT 8$(D)
300 PRINT AT 4,05$(D);"
310 FOR G=0 TO FD)-1
320 PRINT "ANSWER";
330 GO SUB 7104-40*-G-
340 NEXT G
350- PRINT "CORRECT CHOICE?'
350 INPUT tJ*(D)
370 CLS : NEXT D
380 FOR D=I TO E
390 GO SUB 1130
400 PRINT "PROGRAM CHECK"410 PRINT “meammummualmmmmmemmv=,
420 GO SUB 950-
430 PRINT -CORRECT CHOICE=";0$t

D)
440 GO SUB 1210
450: PRINT "TO CONTINUE 	 PRESS
'E' TO EDIT-,
460 INPUT 1$
470 IF Z$=-E - OR 1$=-e - THEN CL

- GO TO 2:30
460 NEXT D
490 CLS
500 PRINT "EDIT FACILITIES END,
DUMMY RUN FOLLOWS"
510 PAUSE 250
520 LET S=0
530 GO SUB 1130
540 PRINT "HELLO, I'M SPECTRUM.
WHAT'S	 YOUR NAME?"
550 INPUT
550 CLS : PRINT "HELLO, "K$;"

I AM GOING" "TO ASK YOU SOME QUE
STIONS AND I WANT YOU TO CHOCS
E THE	 ANSWER WHICH '-'0U TH
INK IS	 CORRECT, AND PRESS
THE LETTER SHOWN NEXT TO IT"

570 GO SUB 1210
580 INPUT 1$
SPO FOR 0=1 TO E
500 GO 511a 1130
510 PRINT AT 2;K;" -;
520 GO SUB 950-
630 PRINT "ANSWER= C7-)"
540 INPUT L$

IF Ls,Jsta 'THEN GO yo

O
Multiple-choice quiz programs

Li

580 PAUSE 500
690- NEXT D
700 Co SUB 1310
710 PRINT "(A)",
720 INPUT C$(D)
730 PRINT C$D)

 RETURN
750 PRINT -(B)-;
750 INPUT C'$0)
770 PRINT 0$:0)
780 RETURN
790 PRINT "(C)";
800 INPUT E$(D)
810 PRINT E$(D)
820 RETURN
830 PRINT -W.)",
540 INPUT F$101
850 PRINT F$(0)
850 RETURN
870 PRINT -(E)-,
880 INPUT 8$ ID)
890 PRINT GiTi(D)
900 RETURN
910 PRINT -(F)-;
920 INPUT H$(D)
930 PRINT H$(D)
948 RETURN
950 PRINT -QUESTION NO. ";D
960 PRINT 6$ ID)
970 FOR 0=0 TO F(D)-1
980 GO SUB 10104-20*0
990 NEXT G

1000 RETURN
1010 PRINT "IRI-;C$(0)
1020 RETURN
1030 PRINT -(5-,0$404
184 0- RETURN
1050 PRINT "(C)";E$(D)
1050 RETURN
1070 PRINT -(0)-;F$(D)
1080 RETURN
1090 PRINT "(E) -,G$(0)
1100 RETURN
1110 PRINT -(F)-,H$(0)
1120 RETURN
1130 CLS
1140 PRINT AT @B; R$
1150 PRINT AT 1,B-1.;-1°1-;
1150 FOR C=1 TO R
1170 PRINT -2d4-,.
1180 NEXT C
1190 PRINT-
1200 RETURN
1210 PRINT -Pe ea-	 INVERSE 14-
ENTER"; INVERSE 0;- -;
1220 RETURN
123 0- PRINT "Th-at is wron g -;K$;-
"“THE CORRECT ANSWER IS -;J$(0)

Multiple-choice quiz programs

550. GG SUB 123.G.
57a PRINT "PLEASE WRIT R HOHENT

126 127

INKEYit="n"OR

GOW$="kA" THEN

Multiple-choice quiz programs

1240 GO E.AJ5 1210
1250 INPUT Z$
1260 RETURN
1270 LET 3=5+1
1200 PRINT "WELL DONE " ; K $; " THR
T "IS THE CORRECT ANSWER 50 YO
U" "SCORE R POINT"
1290 GO TO 570
1300 GO SUE 1130
13. 10 P R NT K $
UE5T IONS" "RIGHT OUT OF " E ".
LEASE" "TELL YOUR TEACHER"
1320 IF M=1 THEN GO TO 1440-
1330 PRINT RT 210"N "N -= NEXT CYO
LE"
1340 FOR Y =1 TO 10
1350 IF INKEY$="N " OR	 $ " n "
THEN GO TO 520

1360 NEXT Y
1370 PRINT RT 21 ; 0; "

1380 FOR Y=1 TO 10
1390 IF INKEY$="N"
THEN GO TO 520

1400 NEXT Y
1410 GO TO 1330
1420 SAVE "TEST"
1430 PRINT "SRUE Rfl:A-MN 7 iYA41"
1440 INPUT W$
1450 IF U$="'f" OR
TO 1420

1460 LET M=0
1470 GO TO 520

•
CHAPTER ELEVEN

Other programs of interest

In this chapter, we'll look at several programs which,
although they are not linked directly with a particular
subject, are of interest. You may well be able to use them in
your classes.

Histograms and Bar Charts
Lines or columns of different lengths are convenient ways of
displaying information. It is simpler to show the information
in bars which run across the page, and we will look at a
program which does this first. However, it is not too difficult
– using the Spectrum's PRINT AT – to produce a graph in
which the bars are printed vertically, and our second
program does this.

The first program plots the frequency with which numbers
in the range 1 to 20 are generated by the random number
function on the Spectrum. Here is the listing:

REM HI5TOGRRM5
DIM Ri20)
PRINT "PL ea.se stand bu"
FOR D=1 TO 300
LET C=INT (RND*20) +1
IF Fl (C) <30 THEN LET R (C)	 C
NEXT D
REM PRINT OUT
CL5
FOR 5=1 TO 20
IF 5<10 THEN PRINT
PRINT B.;
FOR C=1 TO A (B)
PRINT "au"
NEXT C
PR INT
NEXT B

Here is a run with a program in its present form:

129

10
20
30
4.0
50

C:t +1
50
70
75
-90

100
110
120
130
1,4-0
150

Other programs of interest

2
3
^
5

5
^

9
10
11
^c

1.4 	 1IAR^..',^,,.a.ti;t m sw _

1.5
16
^
18
19
20 	

As you know, if the random number generator was
working perfectly, and we had an infinite numer of trials, the
frequency of each number generated would be equal. I
rewrote the program so, instead of simply generating 300
numbers as the first one did, it would generate 3000. This is
the altered listing:

10 REM H 25 TO,•_zŸc i-F: FS
15 RE M LRRGER SRMPt F
20 DIM ^ ,$=! : 22,1
25 PRINT :`Psteaae-	 	 bFr—
3-0 FOR D-1 TO 3000
40 LET C=INT tRNL?*: L? +1
50 IF Pi àC1	 THEN LET 4=s t ti-? =R

5 S..- ; + 1
60 NEXT D
70 REM PRINT OUT

CL5
80 FOR 5=1 TO 20
90 IF .E:10 THEN PRINT 	 -

100 PRINT E; << ,
110 FOR C=1 TO R t5± rr10
120 PRINT "sia"
130 NEXT C
140 PRINT
15^-^. NEXT B

And here is the result of two runs of the program. As you
can see, the distribution of numbers more closely
approaches the theoretical distribution:

3

130

Other programs of interest

^.^ 	 _sau.ues..ac r:x•.^^...:^3màc'r^'ri^S,mE 's ë^é.

-^•---®....._:r..^....^ 	 -	 -	 - -

5
6

8
9

10
11
12
1^1

15
16	 .,^^.
17 nY ^̂ = ^sr.ï^, -_'18	

.=`^-=^.^=.=7,^..^.̂-ti,^.-.^:.r^

1q
20

Finally (and this called for some patience for the run to
end), I modified it to generate 10,000 numbers, and
produced this histogram:

KgiaMONIMMEMEI1
.-,̂

:10
11	 ^ ^F
12	 ;:::;ii$M2SZi .__.93
14-

131

• •
^•_- .>._-•^®.^ _ .

SIMIENNAliEQ
apimmesuagemMINNINciagNIIIMIt
algiimiswkgasiaMMINNIIIMEW

^-	

a._.,,	 , . -_—,.	 x• z...^=''

^3.

ra

^

10
ÿä
12
13

15

17
1.8
:19
20

• • Other programs of interestOther programs of interest

15 mwammilmwmmmilmilmmm
1E
17
15
/9
20

Column Graph
The next program – Column Graph – generates a bar graph
in the way in which, perhaps, we expect to see it, with the
origin in the bottom left hand corner. This program allows
you to select the number of columns of data you want (up to
15) and then gets you to enter the data for each item on the
graph.

This is the program listing:

-	 -- "	 tRAr H_	 _
.Si`éi^Lif

.._
 "t'ii_^t.t MANY COLUMNS? 6i_4

15)";0
IF ^.} ? i5 THEN GO 70 7
DIM R(0)	 _
FOR e-i tr =1 i O ^_
INPUT ri t i_ .5 	 _
IF A 't t >19 THEN LE 4 AtG l = 19
NEXT G
FOR ` ^` C4=1 i i-6 0, ^• r-c
PRINT NT RT :1 2G.; G
FOR N=1 TO i-! (G)
^ R1!^^^~^	 AT -`D -FA—N, `! `fT	 ..	 —é4'_
NEXT '° T N —! ^; =	 i
F': E X i ^2

Here's one run from it:

It may be interesting to modify this program so it produces
a graph of the relative distribution of the numbers generated
by the Spectrum's random number generator.

Sorting Routines

Next we have three sorting routines. The first one simply
sorts numbers into order. If you wish to reverse the order of
the final sequence, change the >= in line 80 into <=:

^ PL:? itii1IFBEF-Z
-3ii:3-: -1"- .: ., - N

10 DIM A ; N 1
= L=R J=1 TO NF^:—, [^ "ENTERss^ ^ 	 NUMBER"

4-z^ P4	 -`
50 NEXT _P

55 t= L S :
1-7,0 FOR Z =1 TO N
70 FOR J=1 TO N--.Z

IF ?-i f:') > =r-a	 YHF i`3
LET T=i^;;`é:
LET A ;^d€ =A sjT11
L ET R i =: -à- 1? =T
NEXT ti
PRINT R i`) 1i • _

NEXT .7.

The second sort puts strings into alphabetical order, as the
sample run illustrates:

P TO
^

30
-^^

R=1
r, c/
70
1=t0
4i:!

7 INPUT "HOW '^ j	 TO
v ^FaaT
MANY :; i	 s

120

1 00
110
120
150
160

THIS
A
TO
THE
WORKS
PLEASE

15
TEST
ENSURE
PROGRAM
SATISFACTORILY

STA ND S`` FOR S O RTE D LIST

R
Iv
SAT ISFRGTGRILI•'
THE
T O

ENSURE
PROGRAM
TEST
THIS
WORKS

i ~ ^
	 F. - — %

132
	

133

Other- programs of interest
	 •

Here is the listing (and note that input must follow the
same format, that is, it must be all in upper or lower case, or
if the first letter of any word is upper case with the rest in
lower case, the first letter of all words must be in upper case
with the rest of all words in lower case):

5 REM ALRHAEE'T SORT
7 REM ALL INPUT MUST EE

E.FT I-ii:..r`'i IN I-LA#='5 OR
SMALL LETTERS

10 INPUT -How many r3 y names Frs Es to so
3 t

-,ca
-,X

INPUT UT -And what is the l = n g
tta o f the „	longestt word (de fau
t i s 15)";Y$: IF Y$_ "" THEN LET
V$=-15"

25 LET Y =4!.i-+L Y$
30 DIM M A $ t X , Y ±
40 FOR N =1 TO ^ X
5^-^. INPUT 1Nt+ERSE 1; -Enter word

number r "; (N) ; A$ M)
60 PRINT A: $(t•i),
70 NEXT XT N
80 FOR N=ï TO ?:-1
90 FOR M==#. TO t:-iŸ

100 IF R$(M) < =A$ (9i,-13 THEN GO T
'? 140

110 LET E$=R$ (M?
120 LET A$ (åt? =A$ (M-#-i?
130 LET A$ (1~l+3) =E$
140 NEXT 3•-i
150 NEXT N
160 PRINT — PLEASE - STAND El'- FOR
SORTED LIST": PAUSE 200: GLS
170 FOR N=1 Tc? X
150 PRINT R$(141.,
190 NEXT N

Finally, we have an age order sort, in which names and
ages are entered, and sorted in ascending age. This sort can
easily be adapted for any situation where two variables are
linked, and you want them sorted in terms of one of the
variables:

Age Name
1.4 Jones
15 Smith
12 Harrison
304 Hartnett

Hat- t n a t t
Smi i th
Jones
Harrison

• Other programs of interest

5 REM AGE ORDER SORT
6 REM OF X NR^ fEE

10 INPUT -How el: ,3 Î ï ±d names to _ O
r t '	 ?:

20 'DIM N$ (X .: 6)
30 DIM a-̂è (:g)
35 PRINT "t=€;4e Name..
û- 0 FOR J=1 TO X
50 INPUT - Enter name number

:U.) ; N$ (U)_	 `_̂3
50INPUT"Hnd how old 2s • `i (N$

(U)) _: A (U?
70 Fr^.1NT A (J) .. ";N$(-1)
80 NEXT J
90 FOR Z=1 TO X-W

200 FOR J=1 TO X-Z
110 IF A(U) >=A (U+1) THEN GO TO

150
120 LET T$=N$(J)
130 LET N$ (t►) =;*)S iJf1=
1.40 LET N$ (U4-1) =; $
1E0 LET T=A (U)
150 LET A (U) =A (U+1)
170 LET A s;..► 4- 3 é =T
180 NEXT J
190 NEXT Z
2^^^-.-0 CLS
'4-.^.::`E FOR J=1 TO X
210 PRINT N$(J)R(J)
220 0 NEXT J

Comparing unlike quantities

This program arose from a question sent to my column
`Response Frame' in Your Computer magazine, when a
reader in New Zealand said he wanted a program which
would work out the time difference between two times (such
as 9.17 am and 3.34 pm) and work out which was earlier (or
later). The final program is of little intrinsic value (because a
routine to detect `AM' and TM' is all that is needed).

However, it is included here because it gives an insight
into comparing quantities which are made up from units
which do not necessarily compare easily (like pounds with
ounces). It is important to remember, in any program in
which you are comparing quantities which are made up of
units with different values (such as pints and gallons, or
hours and minutes), that you must render the values to be
compared down to a single unit. You must also establish a
common input format, so the computer knows what to
expect.

10 DIM R$ t2 . 8) : DIII 'A f
20 FOR Z=1 TO 2

114 135

Other programs of interest	 •

	
•	 Other programs o/ interest

30 INPUT 173* € Z)

40 LET A CZ) = 10RL CR$ CZ? f TO 5) ,
50 IF A$ (Z, 7) ="P" THEN LET R CZ

.' =$- #2:4 +12
60 LET B=INT tR (Z)
70 LET R (Z? =E *E-3-1008 C-? -50*-5
(50 NEXT Z.

IF A # 1)R (2) THEN PRINT A$
1) ; " IS LATER THAN "; R$ C2)

100 IF A C1) to (2} THEN PRINT A$ C
1) " 15 EARLIER THAN ' ,; R$ (2)

This can be done fairly easily with the ZX Spectrum,
because of its simple string handling (discussed in detail in
an earlier chapter in this book). The program here for
comparing times needs input in the form 09.37.AM or
12.04.PM. It then (line 40) works out the value (as a number
with a decimal point) of the time, adds 12 to the whole
number to the left of the decimal point if the seventh
element of the input string is a `P' and then converts the
number into minutes, comparing the two minutes' totals.
The original strings are then used to print out the final
information.

Super Sketch
This fine program, written by Gwyn Dewey, assists you to
create pictures on the Spectrum using keys as indicated in
the instructions provided by lines 60 to 130. The keys zero to
six control the colour. DRAW is controlled by the `Q', `W',
`E', `A', `D', 'Z', `X' and `C' keys. `8' erases and `0' cancels,
.`B' controls the brilliance and `9' sends a copy of the screen
to the ZX Printer.

You exit from the program with the `V' key, and you can
SAVE your artwork on tape with `K' and retrieve it with `J'.
Note that the program expects all input to be in lower case
letters:

1 REM sketch by G. LD. e i;{ e yt
10 LET a=100
15 LET aa=0
20 LET h=100
30 LET c=0
32 LET d =0
33 LET .z =0
35 CL5 _
4-0 PRINT "Super 5k e t ch"
5O REM Author G.Deweya
50 PRINT	 PRINT "This program

he tps you to draw pi ctures t s i
ng the following	 keys. NOTE: on

ly one colour is	 allowed in a
ny one square"

70 PRINT "'0-8 colour control"
8O PRINT "'0,1,1,E,A1ï?,7,X,C DRR

W"
90 PRINT "'8 erases o cancels"

100 PRINT '"8 controls brillian
ce"
110 PRINT " , 4 sends a copy of t

he screen to the ZX PRINTER"
120 PRINT "`l1 exits"
130 PRINT "'K saves F i c t u r e f J L

p ads picture)"
140 IF INKEY$="" THEN GO TO 14.0
150 CLS
151 POKE 2355'6,0
154 INVERSE 0: PLOT a,b
155 INVERSE aa: PLOT a,b
155 LET b$=INKEY$
157 IF b$="" THEN GO TO 154
160 LET a=a-Cb$="q" OR b$="a" Cf

R b$="z .,) +(b$= ., e .. OR b$="d" OR b
$7-4" c ")

170 LET b=b-(b$="z" OR b$="x" C^
R t+$-"c'°) +(I}$="R" OR b$ = ., w „ OR h
$="e")
210 IF b$>="0" AND b$<="7" THEN
INK fVRL b•$)
215 IF b$="8" THEN LET aa=1
215 IF b$=" 7 " THEN LET aa =0
220 IF b$="b" AND d=0 THEN LET

d=1
230 IF b$="r" AND d=1 THEN LET

d =0
240 BRIGHT d
250 IF b.$="9" THEN COPY
250 IF b$="v" THEN GO TO 9100
270 IF b•$="k" THEN SAVE "p i c tu r

e "SCREEIU$
280 IF b$=" j " THEN LORD "Fr i c t4t r

e "SCREEN$
290 GO TO 154

Interior angle of a regular polygon
This program works out the interior angle of a regular
polygon, rounding the answer if needed (see sample run for
seven sides) to two decimal places (it is interesting to try this
for an imaginary polygon with just one or two sides):

A regular polyg on of 3 sides
has interior an g les ï,rf GL

A regular polygon of 4 sides
has interior angles of 90

A re g ular polygon o f 5 s i de s
has interior angles of 105

136
	

137

fin g ears) ";LIFE
130 PRINT — Life of asset is -;

LIFE:- gears-
140 LETDEPREC=(INT (PRICE*100.'

LIFE))/100
150 PRINT — It depreciates £-;D

EPREC;- a year"
186 INPUT -Enter first g ear of

use--(as 19843 -;YEAR
220 PRINT —Year-;TAB 12;-Uorth
240 PRINT YERRTP5 11;"£-)PRICE
250 LET PRICE=PRICE-DEPREC
260 IF PRICE:1 THEN STOP : REM

OR THEN COPY: STOP
270 LET YEAR=YEAR+1
280 POKE 23692,-1
20 GO TO 240

Day of the week

This simple routine works out what day of the week a
specified date falls on, as you can see from this sample run:

Other programs of interestOther programs of interest

A regular polygon of 6 sides
has interior an g les Of 120

A regular poly g on of 7 sides
has interior angles of 128.57
R regular p ol yg on of 8 Sides
has interior an g les of 135
A regular poly gon of 9 sides
has interior an g les of 140

10 REM INTERIOR PNGLz oF
20 REM R REGULAR POLYGON_
30 INPUT -How man g sides? -;SI

DES
40 LET SIDES=INT (SIDES)
50 LET ANGLE=INT (100*(180-360

/5IDES))/100
60 PRINT — A re g ular p ol yg on o

f -;SIDES- sides"
70 PRINT -has interior angles

Of ";RNGLE
80 GO TO 30

19/12/84 - Wed

Straight line depreciation

The program is self-prompting. Note that line 280 (POKE
23692,-1) stops the computer from asking Scroll when the
screen is full. Here's the program in action:

Purchase price is £759.75
Life of asset is 8 gears
It depreciates £94.96 a year
Year	 Worth
1984
1985	 £664.79
1986
	 £56.83

1987	 £474.87
1=188
	 £379,91

1989	 £254.95
1990	 £189.99
1991	 £95.03

And this is the listing for it:
10 REM STRAIGHT LINE
20 REM DEPRECIATION
30 LET YEAR=0
50 INPUT -Enter purchase price

-;PRICE
::50 PRINT — Purchase price i E

-;PRICE
100 INPUT -Enter Life of asset

30/4z83 - Sat

25/12/8 - F.un

1/1/99 - Tue

This is the listing:

10 REM DRY OF THE WEEK
20 LET P$=-..MonTueUedThuFriSa

t5un-
30 INPUT "Enter Month (as 7) -

;11
40 IF 11:1 OR M>12 THEN GO TO 331
SO INPUT -Enter day tas 23)
60 IF 0 :1 OR 0 >31 OR 11=2 AND D

>29 THEN GO TO 50
70 INPUT -Enter g ear (as 1984)

-;Y
80 LET 0=Y4-(M:33
90 LET K=0/100

100 LET T=11-12*(M:3)
110 LET R=INT (13*(T+1)/5)+INT

(5*6,F 4)-INT (K)+INT (A/444-D4-5
120 LET R=R-(7*INT (R/7))+1
130 PRINT TP6 6;D;-/-iM;-/-;Y-1

900;"	 -;A$(R*3 TO R*3+2)

l'IR 139

•Other programs of interest

Seconds timer
Actually, the accuracy of this timer really precludes its use
other than for demonstration purposes, but it succeeds
admirably for that. The plotted point (see between the 5 and
the 10 on the sample printout) moves around the circle,
taking approximately a minute to make the circuit.

• Other programs of interest

Mean, standard deviation, variance
Finally, in this chapter, we have a program to determine
mean, standard deviation and variance. The program is
self-prompting, and the output is simple to interpret. You
may wish to add a routine, similar to that used in the straight
line depreciation program to limit the output to two decimal
places. Here is a sample run:

80
55	 -_

50
	

10	 3
^

4-5	 15
	 21	 ^

1

4_0
	 vv

	 The me an is 24
Variance i s 2.5

75	 25
	 Standard deviation i s 1.581138 i

3 0

24-

$5

i5

4

3

^

The program prints out the numbers, and then stops
(using PAUSE 0 in line 40) to wait for a key press, at which
it begins processing. If you want to make the timer more
accurate, reduce the 39 in line 100 to a 38, and add a line 105
in which the computer must do some calculation (such as
raising a number to a power) which will slow it down enough
to slow the time down. Your students will probably enjoy
calibrating the timer accurately.

Here's the listing for that program:
5 REM SECONDS TIMER

10 FOR N=0 TO 6.0 STEP 5
20 PRINT AT 3.0-iO4-c O5 iNf3e *PI

) ,, 1aß+1 0*SIN (N. 30*Pi) N
30 NEXT N
40 PAUSE 0
50 FOR T=0 TO 59
60 PLOT 33+59 SIN (TF30*F0 I? . 90

+61*COS (TF3 * Ii
100 PAUSE 39
110 PLOT OVER 1:35+5 *SIN (T/30

*PI? .90+S1*COS tTs3O* I?
120 NEXT T
130 GO TO 50

2-03	 ^

235	 3

236
	

1

225
	

2

The mean	 229.55132
V a r ianc e is 8.353302
Standard deviation is 2.9754493

This is the listing:
10 REM MtEAN.. STANDARD
20 RE M DEVIATION,
30 REM VARIANCE
35 INPUT -How manu items? -;h1
40 DIM A(N)
50 DI M 5(N)
30 F OR T = 1 TO N
_+0 POKE 23692,-1

140
	

141

41	 ,
1.zo INPUT "Enter item ' t ^ ? ^ 	 CHAPTER TWELVE

;R(s)
1 4- 0 PRINT 'R (Z) 	 ";E(
180 INPUT "Enter frequency

1Q0 PRINT 5 (s)

220 NEXT Z
270 LET 11=0
260 LET R =0
^ c40 LET B_0
„-i00 FOR Z=1 TO N
310 LET 1`1=*1+5()
-,7120 LET R=R ÷S (Z) *:=4 t.d?
330 LET 5=54-B t.=? *Pt iZ t*R i ^?
340 NEXT
380 PRINT 	 . ..The mean is"; ; R.='M
390 PRINT r• '4; .3: i a ia[e i ^ Be=E-i-P-é

*R:= i N1 *11?
4-00 PRINT — Standard deviation

° ; 5t^^RiB:'?}-i-ådr-I^t;' E,, ^^å: %
4-10 STOP

1000 LET P=0
1010 LET 0=0
1020 LET L=0

Other programs of interest

Evaluating Software for the Spectrum

The Spectrum is a delightfully simple, but powerful,
machine to use and to write programs for. Unfortunately,
the market does not seem large enough to attract the major
software houses into writing anything but games and utility-
type programs. There are many of the `quiz' programs, but
many of these are of little serious educational value. It
would be a terrible waste of a micro's immense power if it
were only to be used for this kind of program.

Therefore, it is necessary for teachers to write software
and to build up resource banks of programs which are
tailor-made to suit the particular needs of an individual
school. The ideal situation would be for teachers to become
programmers, and for programmers to become teachers! In
the meantime, the pressure is on the teaching profession to
adapt to, and to utilise, the new technology as rapidly as
possible. One difficulty here is that the vast majority of
teachers, as I'm sure you realise, are newcomers to
computing and are only just beginning to develop their
programming skills. It is far too much to expect them to
produce programs which are complex and robust enough to
be of general use.

It is also unfortunate that far too many excellent ideas are
lost simply because the program lacks sophistication,
perhaps in error-trapping (discussed elsewhere in this book)
or in screen layout. There are many other teachers who are
not at all interested in programming, and simply wish to use
computers as they would an overhead projector or a video
recorder. Others still remain highly sceptical as to whether
computers have any place in a classroom at all.

So where are the programs to come from for the
immediate future? Fortunately, there are a few software
houses which are producing good educational software for
the Spectrum. Much of it is written by experienced teachers.

143
142

•Evaluating Software for the Spectrum • Evaluating Software for the Spectrum

As a teacher, it is up to you to decide whether the
Spectrum will be of use in a particular lesson, and then to
decide what would be a good package to choose. As is valid
for any classroom aid, the program should be at least as
good as existing methods of covering the work in question,
whether it be amplifying a particular point, or testing
knowledge of a specific area of a subject. Another problem
then comes to mind: Can the whole class participate in the
use of the program at the same time?

With many schools able to afford only a small number of
microcomputers, it can be hard to avoid the temptation to
use them with large numbers of pupils at a time simply to
exploit the computers' gimmick value. To enable an entire
class to use a computer at once, you need a display which
can be seen clearly by all those involved in the lesson. There
is a distinct advantage to be gained from using a new and
existing technology in the classroom, but not when the
program chosen is only of marginal benefit.

It is far better to use a micro when it can do something
which no other teaching method can. As I said in the
introduction to this book, the colour facilities of the
Spectrum, along with the computer's high-resolution
graphics, make it ideal for producing and storing all manner
of complex diagrams. This can be of great use particularly in
subjects such as Biology and Child Welfare, and in the
remedial department where large clear numbers and letters
are required. It is extremely useful to have animated
diagrams, particularly when the movement is under teacher
control, so it can be halted when needed for explanation of
what it is illustrating. A simplified flow diagram showing the
process of photosynthesis, which seems the kind of program
development you should aim at, is included in this book.

Once you've decided that it is appropriate to use
computers in a lesson, what should you look for in
commercial software? Here are five points to check.

1. The purpose of the program should be clearly stated.
The package should contain information as to what age
range it is suitable for, what prior knowledge is assumed
before it can be used, and what type of program it is, i.e.
whether it is an interactive program requiring input from
students, or is a demonstration of a teaching point. The
program could also be a testing program for just one student
to use at a time.

2. The package should clearly state which machine (16K
or 48K) the program demands, and should also point out if a
printer is needed to get the maximum benefit from the
program.

3. The packaging should clearly explain, as well as the
points raised in (1) above, how to use the program, from
loading it in the first place, to explaining what input is
required when you've got it up and running.

4. The program itself should be fully error-trapped.
There can be very few exceptions to this golden rule. For a
program to accept an incorrect type of response – for
example, to allow letters to be entered when a numerical
input is required – and therefore crash can prove very
disruptive in a lesson, similar in effect to a film breaking in a
projector.

5. A program should, if possible, be capable of being
adapted to the needs of a particular school and/or class. This
is an ideal way for schools to obtain really useful software,
provided that adapted programs are not then passed off as
being original.

If all this sounds a little daunting, then help is at hand.
Most of the really useful programs will have been evaluated
at one time or another by experienced reviewers in one or
more of the specialist magazines which deal with the
Spectrum, such as ZX Computing and Sinclair User. They
often contain programs which have been used in a
classroom, and can therefore give an accurate assessment of
usefulness. It is well worth buying these publications and
keeping a record of any educational programs, articles or
reviews.

It would also be useful to become a member of E.Z.U.G.,
the Educational ZX Users' Group (Eric Deeson, Highgate
School, Birmingham 12), which is run under the auspices of
M.U.S.E. The group only puts programs of an acceptable
standard into its library. Therefore, you can buy the
programs knowing that they have all been tried and tested.
Now that there are a number of specialist retail outlets, it is
becoming more and more possible to try out programs
before purchasing them, or at least see them running. This
is, of course, far more satisfactory that relying on
information from advertisements or in catalogues. Most of
the specialist shops are only too pleased to discuss the
programs they sell. It is a good idea to call ill frequently to

1aa 145

•Evaluating Software for the Spectrum

your local computer shop to see what is new, and what they
recommend.

The questions you should ask yourself:

– Is it a suitable time in the teaching schemes to use a
microcomputer?
Is the program chosen relevant to the scheme of work?

– Can the television screen be seen clearly by everyone?
– Does the program have clear documentation which

indicates the purpose of the program and shows how to
use it?

– Is the program easy to use? Is it well error-trapped?
– Can it be adapted to the needs of a particular group?
– Is the package good value for money?

•
CHAPTER THIRTEEN

Using the Spectrum in Infant School, a
case history

Christine S Johnson is headmistress of the Carlton
Netherfield Infant and Nursery School ire Netherfield,
Nottingham. She .has been using the Spectrum (and the
ZX81) with children in the five to seven-and-a-half years
old range for some time. In this section of the book, she
explains how the computer became part of the curriculum,
how it is used, and how the children respond to it.

Ask an elderly person if they can remember their very first
classroom. They will probably describe a large room with
drab walls and a high ceiling. There may have been steps at
the rear of the room, and it's possible that the heavy wooden
desks with iron legs were screwed to the floor. Perhaps there
was a large open fireplace which the teacher had to keep
supplied with coal. It was warm by the fire, but the children
sitting at the other side of the room were shivering and their
noses were blue. Every child had a blackboard, a piece of
chalk, and a small scrap of waste material for `rubbing out'.
Books were few and silence was the rule.

How different from the lively, colourful, purposeful
classrooms of today with cheerful pictures and meaningful
displays. Children are encouraged to ask questions and to
discover things for themselves, to use the attractive books
and plentiful, stimulating apparatus wisely and well.

Just over thirty years ago, computers were extremely rare,
were enormous, complicated pieces of machinery, cost
thousands of pounds and were very limited in the way they
could be used. At present, computers are plentiful, small,
not too costly and very versatile. Their impact on the future
of teaching is impossible to project at this time. Progress is
so rapid that by the time the young children of today have
grown old, almost everything in the world will have changed
beyond recognition, and the computers in use now will
certainly be museum pieces.

147
146

Using the Spectrum in Infant School

Today, however, they are fascinating, exciting, extremely
useful items of equipment and it would not be fair to the
children in our schools today to let them miss the
opportunity of learning how to operate computers.

Most people would agree that it would not be possible for
all children to become so competent that they could write
complicated programs by the age of seven. However, if they
are helped to use a keyboard, to follow clear instructions, to
learn part of a simple computer language and to use
programs connected with many aspects of the school
curriculum, they will be ready and anxious to learn so much
more by the time they reach the Junior School.

The main aims are encouragement and enjoyment.
Today's children are computer-minded and are ready to
receive all the assistance and information they can be
offered.

Imagine that you are six years old. You watch the
television at home each evening and enjoy what you see, but
the following morning you have forgotten all about it
because you were not directly involved. One day at school
the teacher shows you a keyboard connected to the school
television set, and tells you that you can make it work.

She asks you to touch a few keys and then to find the
letters of your name. She helps you with a few more keys
and suddenly your eyes sparkle as your name appears, not
just once but twenty-two times.

3.0 Fi; R DE = ^-
PRiER
PRINT NT	 s- 4. IE :^74 n zS s E w _ '

4.0 PRUv.E eo
G nY ;.^ -;471

Other children have been watching and want to have a
turn. Soon the teacher does not need to help at all because
everyone is giving instructions: "Don't forget the quotation

• Using the Spectrum in Infant School

marks", "Press ENTER at the end of the line" and so on.
One child holds a finger on a key for too long, and a whole

row of letters comes onto the screen. Everyone looks
worried, but the teacher says "We can always put right any
mistakes" and shows how to press CAPS and DELETE. She
shows you how to add two more lines to make a coloured
screen and border.

Later she produces a card with simple instructions as a
reminder, and asks you and your friends to help another
group of children.

When school is over for the day you rush outside to a
waiting parent, saying "Mummy, come and see what I've
been doing. 1 can work a computer!"

What have the children learned from their first lesson?
1. They can make a computer work and that it is fun.
2. There is a 'safety code':

- Only one child is allowed to use the keyboard at a
time (although others can help with reading a
program or spotting letters and symbols)

- No child is allowed to unplug any leads or touch any
switches (the tape recorder and printer are connected
by the teacher before work begins)

- If any real problem develops, the teacher must be
informed

- Anyone using the computer incorrectly, or upsetting
anyone else who is using it, will be banned from using
it for a few days

3. There is no need to be concerned if mistakes are made
as they can be rectified

4. Instructions are given to the computer in lines, each
of which begins with a number

5. It is possible to change from lower case letters to
capitals by using CAPS SHIFT

6. It is possible to leave spaces between words
7. Quotation marks after the instruction PRINT are

important
8. At the end of each line it is essential to press ENTER
9. Instructions may be changed to give different results by

moving the cursor, CAPS and EDIT, for use in such things
as names, colours and timing. At first, the children working
on programs with me changed the whole line, but were then
shown how to use the `arrows' to help to change part of a
line

•

14R 149

Using the Spectrum in Infant School

10. It is possible to explain to someone else how to use
the computer

How it started
It all began in 1981. In connection with a mathematics
project we collected a box of `interesting things'. A group of
children showed a great deal of interest in such things as
magnets and magnifying glasses, and we formed a lunch-
time club. We soon progressed from a telephone made from
yoghurt cartons and a piece of string to something more
sophisticated which connected the Head Teacher's room and
a corridor.

Our simple push-along car made from a construction kit
soon changed to a battery-driven vehicle which reversed
each time the end of a knitting needle struck a wall.

Any child in the school could join the club. They signed
their names in the club book and wore small badges.

After a while, the box could no longer contain our
collection as we added many more items, such as switches,
batteries, wires and small bulbs, home-made musical
instruments, calculators and (very important) two jumbo
typewriters.

We also had a growing library of `infant' type scientific
books, so we had to use a large cupboard. We removed the
doors so that all the items were easily accessible.

We acquired some valves and a TV repairman let us have
a transistor and a microchip, and an interesting discussion
developed. I asked a child to switch on and off an electric
light, and then explained that a valve could work hundreds
of times more quickly and a transistor even more rapidly.

We looked at the large television set and then a pocket-
sized television with a tiny screen. The children were
interested to know that computers were the size of a large
room when their parents were little children.

They also had access to language masters, a `Synchrofax'
and various types of tape-recorder (reel to reel, cassette and
a very small executive tape recorder). After the jumbo
typewriters had been in use in the classroom for some time
we set up the television set, computer and printer.

The only explanation I gave to the children was that a
computer cannot tell the difference between 0 (alphabetical)
and 0 (numerical) so the latter had to be written as 0 and is

1Cn

Using the Spectrum in Infant School

Th,	 / s c,	 Val ve
	

11-us	 s ^

fcan s^ +ar

a -t^ Si zeS

G V)cit	

-Franz, S7-or

Irv"); Cro
C ^l (^

called zero. We did a quick space rocket countdown – 10, 9,
8, 7, 6, 5, 4, 3, 2, 1, zero – and the explanation was accepted.

The CAPS SHIFT key was pointed out and children took
it in turns to write short sentences. They found this very
exciting and rewarding as errors could be rectified with ease.
Their efforts were recorded by the teacher on the printer.
One copy for school, and another to take home to show
parents.

Donna	 s. ^ ï:: 6

We did the com p uter. Mar?* r ;;Lee e	 can F i do it and d Ian r'i t

	

v'	

can.I had a n o today	 d it isgood.o t^3a:arsie and Lorna didnot t have 1•' a a g o 4t F it they E'YtLooked at me. .

As well as using the computer as an interesting typewriter,
the children were shown how to `write in' simple programs.
(Although we started with a Sinclair ZX81, we progressed to
a Spectrum shortly after it became available.)

Use of scrap books

We have two large scrap books. One is called `Interesting

^ •

lii

î5YM BoLCLA PS

CAPS PflPER,

Using the Spectrum in Infant School	 •

Things' and the other is labelled `The Computer'. Any
pictures or written work done by the children has been put
into the books.

ALiC.iés	 am 7

We have 1' C a C%+ m Pi'. t t E' i i n Ns u r
classroom and d WE d t at 	 c • C; r t c-

û : thin g s. One 3 w s4 we did Watt
and we add numbers and we do
'	

^
^as E^s)ir,äu^E:Invaders. We write our:^'r	

^- 1 i?fi	 ^. ç g ç rc}^^ callednames and
Trevor Ma rti n and Patrick sent
u s a message that moved across

it-ac television i t said Hello
bo ys and girls of NttrEï f i et&
School. We hope that you are_
all L c`4.eïi:c; good and 4åtïcc K-.r g
hard. toe i ro trt i- r +Ei=''Ct r Martin
and Pa t r S v b. .

•
Work Cards
How can very young children faced with a keyboard which
has 40 keys, and almost 200 letters, figures, words and
symbols be expected to work (with the minimum of help
from a busy teacher) when the first thing they want to do is
gain `hands on' experience?

A set of clear, simple to follow cards can be made, and
these will help the children to `type in' programs from the
beginning.

As you'll see from the cards shown here, most of the
instructions are straightforward, except that TO and = and
the like are written in little boxes, with SYMBOL in the top
half of the box, to remind the children to press and hold
SYMBOL SHIFT as they press the TO or = or whatever.

Using the Spectrum in Infant School

Wri) e	 tour
	

n q rn e,	 A I

To

P h i Lip	 a #t: .
^ ;-;

This is for C^^^acountin g with ,., -i

when p e C< p i. =- g r,* by you u press a

buttern and it clicks and a
number ära h E' r COMES Up SO that t y C{ Li

Know how a+ many rs y it is and d its
Called a H r=a N D DESK tally
count =-r., : ;-;;;vE Wr i ttErr; 3e
words

BORDER	 L^

2

Li- ®	 PAUSE	 ^ P^

50	 G oTo 3 0

RuN	 ENTE (Z

G^E.q r	 il,e.	 Sc-reen For I-1,e nexF i'ef
son

NE^I	 ENTE(Z

I0 ENTEA

ENï E fz

® PRaNT
SY r7 ßoL

ao
W. 1e. yoWr Harne,

SYn goi-
ENTER

ENTER

ENTER

153
1C)

Using the Spectrum in Infant School	 •

Li S I 2 n Look al- the Go!outrs.

•	 Using the Spectrum in Infant School

As

10 Fo R x sYheoL ^
SYr'Ieo L

To 2 ENTER
I

2 <A
CAPS

B EEP

SYr1eOL

SYn goL

V? ,0 L-

9 ^ ENTER

3 m
NE xT 	X

Ru	 ENTER

EN TER

FoR X SYr-n poL 0
SYr19oL 7	 EN-re. RTo

BORDER	 X	 E	 R

ENT-ER
CAPS SYriBoL S(rIgo L 	 SYnBoLx CAPS

CqPS PAPEK 7 C LS

PAUSE_

N o ,,,/ Marl) S ourn cÅS Cg n 	 k e, cl Y ?

Pres s RU N ENTE.. R agq6 rl .

ç o Yo	 1 (b

DELETE is worked in a similar way, but with the word
CAPS above the word DELETE within a box. The more
difficult BEEP and PAPER etc are written as a box divided
into quarters, labelled CAPS SYMBOL BEEP SYMBOL to
help the children to remember to press CAPS and SYMBOL
together and then to hold SYMBOL before pressing BEEP.

Small fingers usually master this during the first two
lessons. (David and Dale are 6 and wrote their names – and
put them on the printer within a few minutes of seeing their
first SPECTRUM.)

In the early stages, ENTER is written at the end of each
line, but this can soon be omitted when the children have
had more experience. After a few weeks the children can
master some of the shorter programs from books and
magazines.

154

Îo fook al- FhE colour5 QgQir1 PUN ENTE ^

= 'v' i f_
B._6RÎ?Ÿ r
PR1 ^'^^ _.	 {	 .	 ..t i-..'.^
–' RU`•C 150â z.
t^^ XTi ̂ 0 T t. 1 + %

As well as the `work cards' it is useful to have a set of cards
which give information to the children, such as those shown
here.

At first they will have difficulty in finding some of the
words and symbols, although they have no problem in
finding figures and letters, especially if they have had some

155

cI s and

RND	 Y
Ar

IN Pur
INVERSE ri

BEEP

BORDER

B R I ct

CAPS LOCK

CIRc LE

C. L S

Co NY

co PY

DELETE	 0

ED 1T

FLASH

Foe.

ç o To

çRAPNICS

IF
INK

I NKEY$

LET

LI ST
L LI sT

LO P D

L PRINT

NEW

PR PER G

phlusE	 M

PRINï	 P

RAND	 T _

RE I" I	 E —
(ZETu RN 	 Y ?

KN D 	 -r
Ku N	 P^ ^
sToP	 A
Tf-1 E N
T'®

L

K
V

J

Z

2

H

V

Z

v
L

C

X

1

V

F

G

9

u

N

wall

SY rIBo

•	 Using the Spectrum in Infant SchoolUsing the Spectrum in Infant School

G am e_,

[SY ,160 ,-. 1
^

Pr e ss

wo i c l-,

PLAY on hhe Tore recorder

ide	 Screen unl I you
STOP THE TA PE

Pre_ss	 STOP	 Fke. FaPe, recorder

ro plq ^ hl-,e, cJ arv-, e,	 pre s5

on	 I-L,e.	 co ^,PuÎe

Nold down	 CA P S 	and use.

For IeI b C

P
	

ror ri qY^ l

W r ic e. a o wn tou r Sc ore_

Press Y hö ptc,	 (I,e g ame, non

LoAD

Qn I-1 ke ^

ENTER

a rich

s e e,

experience with a typewriter. The simplest card gives the
most commonly-used words and symbols. Much later, the
children should have access to cards giving the full range of
words and symbols.

Children enjoy holding the cards and giving information
to others when necessary.

Other cards which may be useful are:

—Listructions for loading a program from a tape
recorder

—Deleting or changing lines in a program

—A cursor card
—A list of colours
—The priority of number functions, () " ,ti / + —, for

older children

When the children play computer games such as `Wall', it
is useful to have a card for each game, to remind them which
keys to press to work the game, such as 'O' to make the bat
go to the left, and `P' to get it to move to the right.

It helps if all tapes and work cards are marked with small

156

 l

I57

o F q Sum qr,d cheek

your

PRI NT

answer

press q number SYMßo^--
-}-

press g nutiWer ENTER

-rr N q q q ; n .

/ he. a ns wer

o F f I,e screen	 Were.

I- 0	 k e l o p

Uoq ri q^,

I

^?

W.' I I corn e,

When Nou

pi n sv./erS

si nd	 le.i-

1- urn .

1•a /e	 q	 lone ^i sF of

press	 NE W co-1A ENI-E12

someone else —,Ave q

L,

K̂ CL.CKI

•Using the Spectrum in Infant School • Using the Spectrum in Infant School

child has completed work cards Al, A2, A3 and the rest, he
or she can move onto B1, B2, etc.

When 1 first acquired the Spectrum, I wrote out
instructions for using the tape recorder - saving and loading
- and had the full list of codewords and symbols near the
computer. I felt much more confident when I was
surrounded by parents and children that I would not plug in
the incorrect leads, and would not be fumbling for keys.
Later I found that a `piano-type keyboard' set of instructions
for DRAW and CIRCLE, and a squared, numbered `screen'
were very useful.

The Computer Game
This is a class activity which teaches young children about a
computer in a very simple way.

Ask the children to stand in groups of four. One child is
the `User' and stands facing the other three, who each hold a
sign:

coloured stickers so that they can be put into groups or sets,
such as:

1. Yellow - computer practice
2. Green - school work
3. Red	 - Computer games
4. Blue	 - Recording-keeping and teacher's aids

Group Two can be subdivided into school subjects, such as
Mathematics, English, Pre-reading and so on.

Letters and numbers can be written on the stickers so that
children can work at their own pace. For example, when a

`USER' can only speak to INPUT and can choose his or
her own question. For example: "If I have four sweets and
eat two, how many are left?" INPUT asks processor the
same question. PROCESSOR must work out the answer
while running up and down on the spot. The answer is
passed to OUTPUT who in turn passes it back to user. The
children enjoy this game, and can continue at their own
speed, changing places occasionally. It is interesting to
watch the PROCESSORs performing their little dances
while working out their answers. The teacher walks from
group to group checking that all is well.

158
	 159

COMPUTER

•

The Byte Game
Another game enjoyed by the children is one which will
mean much more to them as they become older and more
experienced.

Each child is called a `bit' and moves around the hall to
music. When the music stops, they have to try and form lines
of eight. The children in the line can choose whether to
stand up and be called "high powered" (or 1) or sit down
and be called "low powered" (or 0). Children in the first
group to be ready receive a counter and the music begins
again and the game continues.

At the end of the session the child with the most counters
(the one who has been in the quickest `byte' most often) is
the outright winner.

To date, 1 have not given any more information about the
binary system to the very young children, except to mention
that a computer with a 1K memory has just over 1000 bytes
and that our computer has a 16K memory.

• Using the Spectrum in Infant i n rt School

Storing the equipment
Some computers have to be left in a permanent position in
the school building, but a Spectrum can be carried around to
be used with any television set (usually colour, but some
programs work well on a black and white set if the colour set
is already in use).

When people receive a computer for the first time, they
nearly always put each item carefully into the original boxes
for safe-keeping. This is the ideal method, but can be far too
time-consuming in a busy school.

It is not always convenient for the equipment to be `set up'
for long periods of time, and it is sensible to put everything
away each evening.

One easy way to store the computer, printer, tape
recorder and a few cassettes, is to beg a strong, medium-
sized, fairly shallow cardboard box from a supermarket.
Experiment with different sizes of boxes until one is found
which will hold everything in current use. Pad the base of the
box with foam rubber of different thicknesses so that each
item will fit into its own space. It will probably be possible
for the printer and some of the leads to remain connected.

A large piece of hardboard or chipboard, covered with felt
and with narrow strips of wood fixed around the edge,
making a tray, can be used on the top of a table so that the
items do not slip. Work cards can be kept in transparent
pockets in a loose-leaf file.

Badges

All young children enjoy wearing badges. So why not
reward them when they reach a certain standard?

A six- or seven-year-old child will be proud to wear a
home-made badge when they have proved they can:

Using the Spectrum in Infant School

160 161

Using the Spectrum in Infant School

1. Copy a simple program from a card
2. Load a program from a tape recorder
3. Use the printer (The printer and cassette recorder

must be connected to the computer at the beginning
of each session)

If you have a school computer club, have a badge for each
member. Note that small cardboard badges, complete with
safety pins, suitable for this purpose, can be obtained from
most large stationers.

A teacher may say that he or she cannot be with the
computer group all the time. There is no real problem with
this, as once the children have had experience in using the
program cards, and can load a program from a tape
recorder, they can be left in the corner of a classroom to
follow instructions. Sometimes a program is left on the TV
screen for a whole session, and can be used, as an example,
to give instructions to the children as in this example:

Write about _ oc... :}3,.. t to the
fire St. . io:..

Wtr•s . ds to hE tp s_cst#

Fire 4• Tsriy-tE	 tad-der

CHAPTER FOURTEEN

Specific Applications in Infant School

In this chapter, we outline a number of specific ideas for
using the Spectrum more directly in education in infant
school.

Handwriting

Some children have difficulty in forming letters correctly. If
they are asked to enter into the computer the very simple
`MAGIC O' program, they can then follow the shape as it
comes on the screen. When you run this, you'll see the `O' is
formed in a way which shows the direction of the line
(anti-clockwise) very clearly. An older child or parent could
write in the program for a younger child.

• •

p o t E 	 FtoSE

boots

water

burn

Ct r't i Ÿ ü r rit	 t-> E #. rtt E t

a :; E'

d ar ,le r C+t.!_

safe

10 REM Ma g ic 0
CIRCLE 100,100,75
F= R U S E 100

^:.^ Ot!FR 1
GO TO 20

r l i t

_	 i. ,.. ..	 y

c are t u t

This helps with reading and free writing and the words on
the screen can be easily changed.

162	 163

:vneoLC R P5

ciacLECqPS

sYn6oL20 5^ l
SYnaoLl

5ll)

ENTER5- 0 PAusE ô

/+s ENTER

ENTE R

ENTE R

30

;_ e t t er
F
3;
,571

PAUSE _^ U ,L= s= SO
=RAW -90

^2'si0

2e

1"1 a ke	 lel' l- er 	 d

1+0 D RAW 0 .7 l20

-60

•Specific applications in Infant School

You can follow this with the `a' and 'd' programs:

• Specific applications in Infant School

Here's the program card for the letter d program:

I:^ 3 ë iL J ter d
6	 D RA w S YnBo^ 15o ENTER,

-,LAW0,120
PAU3E '^i^
DRAW '5,-150
PAUSE SE 200 ^
CLS
--._̂-- LG 'T É? 20

^ 0 PAUSE 20 0 40

7g1

CIO

EN1rER

q 0 Golo 20 E N/TE R

Follow I-ke. shape wil-k lour

Remedial reading
Try using the TV screen as a reading aid for slower children,
or for children who are lacking in confidence. Let a group of
four or five children watch the teacher print a sentence or
two using a few words from the more simple books from the
school scheme, and include each child's name if possible.
Leave the children to help each other and when they report
that they can read the words on the screen, let each one
press COPY and ENTER so that they have copies to stick

165
1M

- o^` r[,	 1-1 e
e^ ° run

a se. ti E i V

.°e	 tiric4

are
bi _ s_3 _€ l;

Specific applications in Infant School
	 •

into their word books, or to take home.

difficult words can be used. The teacher will probably find
that the children are soon asking if they can write their own

As the children improve, longer `pages' with more

words and sentences.

D a °_? i d has a new F o o t ba r_ r_ +

He would _ _ .:;.e =o ,r^ l -i a ..`c

No *t i r-€ g h 3 rf€ Forest

€-. a r.'c	 a	 n:2!:1 :2 . 	,-1.111t1,

for h e r 1-4i r thdau e She

thinks it looks like a

real baby.

G a r et h 's_ i éce.S t o r i de h i _.-

hi --! c le

David and t_ i n d s a tl an d

Gareth lit;e to plats.

•
CHAPTER FIFTEEN

Maintaining Interest

There is little problem in keeping children interested in
using the computer. However, it is just as well to use as
many facilities of the Spectrum as possible, to ensure that
the programs the children run are interesting.

Sound

An amusing piece of work was evolved around a few
randomly chosen, repeating notes. The children said it
sounded like someone running, so we coloured the
BORDER and PAPER, left `the patter of tiny feet' in the
background, and wrote the following on the screen:

Hr-re	 :._ = the men n From one
of the planets. i 	 run

ar5ls and thIn tens_

I think that they are	 i^€ ti; Fi è i f n c away from a big L`_2 i Zi
space monster.

Can .;ou drake a lot of
litt le men fror€. space r unn in g
from a horrible :_=l i monster?

This was a good reading exercise and the pictures were
super. We taped the program so that we could use it again:

i . REM Read 1
20 PRINT _.

He r~ come the men
of the planets. Th
very q u _ c K i g and d h
tin y feet. T t-.e q ha
a rffi_ a f' d thin r€ leg--

I i h i 3; '. that they
runnin g swa g f t o,Fi a
Space monster.

167

Maintaining interest

180 CL8
1 =-45 GO SUB :=11100
200 BEEP 1.3: BEEP 13: SEEP 1,

12: BEEP 1,12: BEEP	 BEEPBEEP 2,12.

220 GO SUB 10'7;0
r-	 •	 BE-Br-	 s.-!zrt

1,9: BEEP 1,9. bEEF 1,7: BEEP 1,
f."4	 :2=1

t=",

Tu
1 0 ,7k,7, PRINT

2000

100-1

•

1001 RETHRN
PRINT

Maintaining interest

t o F
runninq

BORDER 5
46 PRPER 5

a=0
50 PRUSE 10
70 BEEP
SO LET	 ±F,
9 e71 IF a >50 THEN

100 GO TO s

It is possible to copy programs which help with the writing
of simple tunes. Music familiar to the children may be used
or they can experiment by writing tunes of their own. The
group should work in a quiet corner, so as not to disturb the
other children.

This next program plays the tune 'Twinkle, twinkle little
star'. The star pattern changes at the end of each line. The
colours and patterns of the stars can be changed very easily.
We've left the program running in a 'Mums and toddlers'
group so that the children could listen in, or have a quiet sing
whenever they wished. The sound can be amplified by using
a tape recorder. (I am sure that many other simple songs
could be used in this way. Perhaps someone could make a
graphic animal for each verse of 'Old MacDonald had a
farm', so that everyone could join in for a sing song.)

10 REM -Star
20 BORDER 3

PRPER 7
40 INK
SO GO SUB 1000
60 CL6
70 GO SUB 2000
5.3 BEP	 =7„--

BEEF 2.12.

1017 GO 3UE 1000
110 DEEP 1,10: SEEP 1,10: BEEP

	

1 , c4:	 BEEP 1,
7: f=,F---Fp

	

1%---. V1	 :=,1

130 GO SUB 2000
140 SEEP 1,12: BEEP 1,12: SEEP

1.15: BEEP 1L3. SEEP 1.9: BEEP

150 CLS
150 GO 5tv6 loeo
170 BEEP 1,12- BEEP 1-12: BEEP

1,10: BEEP 1=10: SEEP 1.9: BEEP
BEEP

•
Can q c,t.:4 draw a to

m =-n fr-r=ffi =pa
frOfh a horrib!e mon

2001 RETURN

16g 169

SO INK K 6
r_t=< PRINT^ ..
70 PRINT

I-
SOSO INK 3
g o PRINT

s^^A^.,
^.y. ^^^e_^

100 0 INK 5
110 PRINT

^	 ^
	

^

s ^ 3 = g 5 ^ 3

•Maintaining interest

Happy Birthday
This is a program which can be used to delight a child on a
special day. A birthday cake appears on the screen as
follows:

Sarah i= six toda y

Hap pu bs i t hd.au ,

The 'Happy Birthday' song is heard repeatedly. In this
example, Sarah's cake has six candles, but the number of
candles, the age and the name can easily be changed.

L' ^L-^^' -^ v -
_ ^-,..^

pRFF- -
PR t

4.6 PRINT
	 9 i= i-- p',4 birth th

J 34.

•
Maintaining interest

If you put the program on tape beforehand, using a
number of different ages with the appropriate number of
candles, and save them on tape as 'BIRTHDAY 4' and
`BIRTHDAY 5' and so on, it will be a simple matter to load
the correct program. Line 30 can then be quickly edited to
include the correct name.

Using the Spectrum's colours

The children can 'build' a house by following simple
instructions and by using the colour keys, to answer
questions such as "What colour would you like the roof?".
After they have pressed the colour of their choice, the next
question appears.

Th ank you f or c=+iotering t h e
hous e- .	 i?-ood-hzie?

A-	 L

-^

17(1

When the house is completed, the children are asked
press `y' or 'n' (for `yes' or `no') to get another house
build.

10 REM "t-aou =-e ..
-^^.̂ .. ,:t F	 7y: ^_̂ F; ;4 -^ TO 	 +30^^$1?? row: POKE y,gi}'i

tÈ+

40 NEXT n
50 FOR p=0 TO 7^ =v READ rc= w . POKE LISP ..B..4-{ ;

NEXT €_`
BL S BORDER
PRINT 3€-3T AT 0,0:,-What c o i ;.• u r w
°-: o u Like iS e the e	 1 Lï'f : `
I ^^`t^' . a	 INK 3
LET z=6: LET y=f'
PRINT RT
IF z=3 THEN t30 TO 150

171

to
to

a o

ou t 4
100
110 0
120 0
'WyZSS

•
14-0 LET 2=2-1: LET y=y4-1
150 GO TO 120
160 LET u=q+1
170 PRINT RT 2,y-M"
160 IF q =19 THEN GO TO 210
190 LFT:q=q+1
200 GO Tb 170
210 LET T4=i44-1
220 PR/Nt RT

IF 2=5 THEN GO TO 260
24-0 LET 1=2+1: LET Li=y+1

GO TO 220
260 INK 0

PRINT RT 0;-What colour w
ou Id q ou LIKE th E walls?"
280 INPUT b: INK b
=90 LET 2=2+1
500 PRINT RT z,!-WI"
310 IF Z=1* THEN GO TO 340

LET 2=7+1
Gn TO

840 LET 7=24-1
350 PRINT RT 2,k4-2
360 LET =LI
=17171 PRINT AT ,x.g;"'-
380 IF y=7 "UHEf4 GO TO 4-10

LET y=k-i-1
4-00 OC) TO 370
410 LET y=9-1
4-20 PRINT AT

LET
4-4-0 PRINT RT z,k4"b-
450 IF z=6 THEN GO TO 4-80
4-50 LET 2=2-1
4-70 GO TC 1_40
-4-50 LET Y=.91-1
490 PRINT AT -
SOO IF 9=22 THEN GO TO 530

LET Y9i-1
520 GO TO 490

1NP,
64-0 PRTNT RT 0,0-What coLour W

rtud ,-4ou tiKE the	 windows?"
INPUT c: INK c

560 LET 2=9: LET k4=9
570 PRINT RT 2, q 'r-
550 LET k4=Q+1
5.90PR-TNT PT Z,k-4.-
655 LET 2=2+1
610 PRINT RT z.k-i"g"
620 IF 2=11 THEN GO TO
630
64_0 GO TO 610

bbU PRINT PT 2
670 LET q=q-1
680 PRINT RT
	

II •

690 LET 2=2-1
70e PRINT
710 IF ---,-1171 THEN GO TO 7.-!0
72 E71 LET z=z-1730	 1L

• Maintaining interest

LET .1=9. LET ;:=1---A
PRINT RT

•

r'RINF RT 7--:=-1;"-
7 zR 1,7i 1-1-=T 2=2+1
790 PRTNT RT m;-2-
600 IF -z-=11 THEN GO TO 8308 10 LET 2 = 2 +1

GO TO 790
LET z=z+1

84-0 PRINT RT 7-,i4;-
850 LET k4=q-1
860 PRINT AT 7,Y;
87 E71 LET 2=2-1
880 PRINT RT 2:t.-W1-
80 IF -r , 1171 THEN GO TO 920900 LET z=z - a

910 GO TO eee
920 INK 0
930 PRINT AT 011:

ouLd L;ou tiKe the	 door?
94-0 INPUT d: INK

LET 2=14-: LETci 6“7= PRINT RT 2,k-1;970 IF 2=9 THEN GO TO 1000980 LET 2 = 2 -160 To
1000 LET
1010 PRINT RT z, q ;"r-l pic)f;1 LET
1 030 PRINt RT 7-,4:--
154-0 IF q =15 THEN GO TO 1 57
10L;0
1070 LET q=q+1
1080 PRINT RT
1090 LET z=z+1
11	 PR-rT RT
11 10 IF Z=14 THEN GO TO 114011 20 LET 2=2+1
1130 60 TO 1100
114-0 INK 0

PRINT PT 0,0;-Wh 	 colour W
O U t	 - 1j Like the	 border?"1160 INPUT E: BORDER e11 7 01 PRINT RT 0,0"The house isfini =lhed now. Would YOU Like torhake another one?	 Please answer y Or n."

INPUT
1 10 IF f=-q" THEN GO TOTF i ti;=6- THEN PRINT PT 0,0;-Than	 2iot. i= or colouring 7.hehriuc-e.
1210 GO TO 124 0
1220 PRINT "Pre ss q Or n a g ain pI ease."
1230 GO TO 1160
124-0 STOP
1255 DRTR BIN 50530005 1 01N 000006 10,FEIN 000001158TN 0017111 53 T

Maiwailibigintemst

1 F T	 +. 1

-What colour 'AI

172 173

Maintaining interest

t 3 _ ^ 1 _̂ 	 ^.̂ ^. , -, 11 '^ ^^^ i E r:': ^- _ •1-^

1. 60i'f!-fT.iî $3t'}
•_

00^-'}00000 -BIN 0:1L-̀S00
^-R =iA! 01100000 ,DIN 01110000,51^ ^ ``	 -3 :_* ^ ^ T ? . 0111 N^^E1_.1.>0°^-^-.L•'-E BIF•. Z32 Z _ t--. -

1110 - 1 S: ^ L' = L? L L C - L L V?

Thar'.: =. g ou rar ca? O U : i i1 q the
: , o u _- =	 G o o ,i -- b g a !

ii ou Se

Re a d cltu e sh a n.

•

C. k o o s e Fke colour and pre ss

1 For

2 Par
For

LE Par

5	 For-

Par

For

BLUE

RED
rIA qENTA

GRE EN

CYA N
YELLa rnl

BLACK

To rn ci ke anoFl-,er hose

pre s S Fo r s

sFoP
r

fhe

n	 For

p ro g rarrl

n 0 .
J

T-0

pre-SS

• Maintaining interest

Bubbles

The next program (adapted from one in The ZX Spectrum
Explored, Sinclair Browne, 1982) is a great favourite with
the children. We have called it Bubbles' and have slowed it
down, by adding a PAUSE line:

10 REM EtubbC-s
20 PRPER 0

. - i.='_^•rrt :z :'2 _`! :`1 1:1
40 LET ?t = - r*R t :L') +1i
50 LET .: = i E *RND.y -#- 1
60 CIRCLE _I N:ï

i^	
;.t: , 1 0

70	 :--' 	E 3̀ L	 -	 • 	 -

80 GO TO 30

Parents

Parents are welcome in schools, as they can help in many
ways. They are curious, as well, especially about computers.
They did not have the opportunity to operate computers
when they were at school, although many of them use them
now. Often parents and children will learn together.

After the children have shown that they can write their
names on the computer, and can follow instructions from a

175
1id

.<
Rd

d:_

f _ NT , R1‘).42, __ .^^^? . .f
4 	 - y2 4= 4 ^^ i 2	 : RI-31) .!' _ ^

t =0
F _	 T{_? _

-}h a - i = the = F _ à - t £ ? _

t 3^ th- _ _ z t1 n - number'?

C40 T., == t._;T _̂
	

_	 _

=}^ _v v t c THEN 3._ Y TNT c
.r.' ^^ . :

are w t`
`
 ^= i y `

P Téi_{ ^_F £ Li0
ti =c THEN

L- L

'5:1^ a TF.r	 ._ _ 	..
_ _ answer

a

-^:^• r,- - t

160 PR USE 1t^t=^=^^ . _L j_	 .
-	 PRINT "You ?^ l+ 3 i v_ ri g ht, Y . ^: e t Z
;^}^' ^-^13t'.

done."
 I il-0 -- --} U ^- F 100

)7;0 TO 170

T LF`à PRINT "Th e L +_ •

t

•Maintaining interest

card, the parents usually want to show their keyboard skills.
The Spectrum demonstration tape – `Keyboard Trainer,
Lesson One' – can be loaded and parents and children left to
help each other. After using the simple instruction cards,
parents are soon able to enter programs from books and
magazines. One father spent the whole afternoon at school
using the spectrum (for the first time) and wrote the
following program:

Parents and children enjoy writing messages to each
other. leaving them on the screen, or using the printer.

I recently watched a man buying a Spectrum for his three
children. The shop was busy and the assistant was looking
anxiously at the queue. "If I plug it in," said the bewildered
father, "does it play games right away? How does it know
what to do? I shan't be able to show them how to use it when
I give it to them." I reassured hint that I felt just the same 18
months ago. Then 1 asked him the age of the children, and
he told me that the oldest was 14 and had used a Spectrum at
school. Everyone in the queue breathed sighs of relief, and
told him that there would he no problems, and he would be
lucky if they allowed him near the computer for several
days. Someone asked him where he lived, and offered to go
to the house to help. The man asked about tape recorders

Maintaining interest

and was told they saved a lot of time. Books were produced
and more advice given. In fact, a computer club was almost
formed on the spot.

I have found that most adults fall into one of two
categories: those who are great experts, and those who say
they want to run a mile at the mention of the word
`computer'. Children are all of one voice. They are keen,
confident, and are anxious to get `hands on' experience. The
`shy' parents are soon converted after they have watched
their very young children using the computer without
difficulty.

History

Children enjoy hearing about the first computer. I teach
them a series of lessons based on the following material. The
depth to which the subject is treated is dependent upon the
age of the children.

Babhage's machines (1830s)
Charles Babbage was extremely annoyed at the inaccuracies
in certain astronomical tables that had been calculated at the
beginning of the nineteenth century. He realised that there
was a need for a sophisticated device for calculations of
greater accuracy.

He decided to build a mechanical computing device that
could handle numbers with as many as 20 digits. One device,
his 'Difference Engine' was partially completed, and he
made plans for another, called the `Analytical Engine'.

The engineering techniques of his time could not cope
with his elaborate ideas, and because of this and the amount
of money required, his projects failed.

Hollerith's Punched Cards (1890)
Herman Hollerith was employed by the American Census
Bureau.

The 1880 census took seven years to complete, and
Hollerith realised that the 1890 census would take a much
longer time because of the very fast growth of the American
population.

Unless mechanical devices were used, it was possible that

177

Maintaining interest
	 •

the results would not be completed before the 1900 census
was due. Hollerith used a punched card code for the
information, along with electro-mechanical devices which
sorted the cards and then printed the data and totals. His
important contribution meant that the 1890 census was
completed in three years.

Aiken's development of Babbage's machine (1940)
The 'Automatic Sequence Controlled Calculator' was
developed by Howard Aiken at Harvard University and was
completed in 1944. It was electro-mechanical, consisting
bascially of a large number of calculators, controlled by
instructions stored on paper tape. The machine was used by
the US Navy for 15 years.

r ß .^ t t :- , :^

f,-"!

^	 ï
-_r`.	 me ago _^- ^ -^ was a

man ^_

	

_ ïP A ,t:	 BabF.3ge , He
tried : = t ^̀-^S hard to m a a. e '3
iii a % r!_ ne t' st was .tr?}'_é g ood -a%
doing sums sfe g 3ff=c	 <<-,^'_n

.. _ 3 ? i Z _ that ..	 _

_ i_ = '-? -3 ' :: !`: ! ' ^^- : ^ ^= ^t! s • ^ == {{

out o f rf: r ^ .= J so he cou ' rF not S

f	 . _	 h . 3 4!: -3 '_?^! _ ![G '

Computers 1946-1959
The computers were built to use valves, and were relatively
slow in operation. They consisted of a central processing
unit and input and output devices. They used primitive but
ingenious types of storage units which were later replaced by
the use of ferrite cores.

Developments 1960-1964
The invention of the transistor meant that much smaller
computers could be built. These had circuit boards with
transistors, diodes, capacitors and resistors.

Transistors, like valves, are electronic switches through
which current can be passed under certain circumstances.
Because of their `switching speed', transistors enabled the
computer to work at a much faster speed than was possible
with valves.

• Maintaining interest

By this stage, magnetic tapes and discs were beginning to
be used with computers.

Computers from 1964
Computer manufacturers began to spend as much money on
the development of software as they did on the hardware.

The computer became even smaller with the introduction
of integrated circuits in which transistors, diodes, capacitors
and resistors were, in effect, fused together into a chip.

178 179

..	 star t ir a

age tan gearr

five to Z . t

• • Brain Games

CHAPTER SIXTEEN

Brain Games

As you'll read in my `final thoughts', some schools have
found that the use their computers get above and beyond
planned use within classes, depends to some extent upon the
availability of software which is not locked to specific
classes.

It would not be appropriate for me to provide you with
listings of programs like `Galactic Intruders'. Rather, here
are a few games which have sufficient points in their favour —
above and beyond the very important one that they are fun
to operate — to merit inclusion in this book.

You'll find that these programs are also useful as
`icebreakers' to help students whose first contact with a
computer is the one in the classroom.

Mind reader
This game asks the student to enter his or her name, and
then follow a number of instructions, all of which demand a
certain facility with mathematics. Having followed the
instructions, and pressed ENTER after carrying out each
step as instructed, the computer tells the student their age,
and how much change he or she is carrying. The program
does not take long to run (although, of course, the less
competent the mathematician running it, the longer it will
take) so several students can have a run through with it after
it has been loaded.

This is the listing for MIND READER:

'E MIND READER
20 INPUT "Uhat is y our name?

30 PRINT	 '' i ? i t vim:	 _	 " å'+
40 PRINT "-It's time t6

your tti i c t'	 w i `ir n;_.`.__- _ 	 nA M

50 GO SUR 5 `1

E0 PRINT ,. OK , " ;
må..l ttipt;àing"_ 'yLjir

= 1 by two"
70 GO SUB E00
E0 PRINT °° N;, a d A
GG ,= O SUB ^^^^Y^^

100 PRINT - f-:t4 now mutta,-t " that by 50- °
110 G O EU E E00
120 PRINT "Now 	 - subtract ^z ^ ^ °L^

	

M t^ia t ^ 	 ^

130 GO SUB E00
140 PRINT "Now add the _amount o loose",-change in _3+?^€ 	 _:	 t a,:À. 5 0 GO SUB E 500 ^+	 ^ ^ ` ` ?^ c
1 60 PRINT " NOW give me th e n uA1yher you've- ,-ended up 11^ 1 t ^^`170 INPUT R
:Leo GO SUB see
190 LET ^R-Rs ^'513-200L^ T E =3è,tT	 .i^sï 3i^ a..^^ ^	 -	 i ^^	 ((--f??.. ^ :^ LET T >Z = ^ ^ ^ ^ 9_f ii- S230 PRINT `You have " ;R,- zha r^#qe•
_2 -̀^.-dt .= LS _ SUB E 500 ^-^^.-
^EE PRINT -Li`! T " - And are ' Ei .' gears old"
260 STOP
500 FOR G=1 1 TO 300: NEXT GE10 PRINT "-Press	 INVERSE 1; - ENTER-; INVERSE 0;- when _a"l+: re", 'ready t o continue-
520 INPUT Z$
i3'i CL L,
E4..0 RETURN

Here's what it looks like in action:

Hi there. Tif:

I t's time, to test g our _,k3 : twith numbers, and mg k à t L asa mind readeri

OK, Tim, start b g 1t 1 i L i s^ ^ g ^ '_
your age ,_a-c t:_a<_s == i` two

: tad =t :	 _==t '«n

3, o {-.; have 'S' e 38 c h {] å t L+ P

And are 17 years Old

180 181

•Brain Games •
Brain Games

Code-breaker
The next program is a simplified form of the game
Mastermind (the game and name are copyright Invicta
Plastics). Invicta bought the rights to the game from an
amateur mathematician – Mordechai Meirovich – in 1971.
The game has been popular here in the UK for centuries
under the name of `Bulls and Cows'.

Whereas the commercial toy generally uses coloured
plastic pegs, and has one player choosing a four-colour
`code' which the other player tries to break, this version uses
digits instead of colours. The code is three-digits long, and –
to make it easier to solve – the same digit is not repeated
within a code. This means, for example, that 123 and 973 are
valid codes, but 993 and 272 are not. Zero is not used.

Here's a sample run of `Code-breaker':

This is guess number g
i biacK L whites
O b L a c #i s i white

^"1. ÿ bt3cK 1 white
1 É31.a L i\ 2 whites
O €	 -a-^ac - 3 whites
1 black ^'^^wh, te=.
O bLact'.5 3 whites
O ûLack{ 3 whites

You g ot it 3 n fq guc:==es

code was- 726

As you can see from this sample run, the computer awards
a `black' for any digit in the right position within the code,
and a `white' for any digit which appears in both the code
and the student's guess, but not in the correct position. The
player attempts to work out the code in less than 10 guesses,
using the feedback the computer gives after each guess is
entered.

This is the listing for `Code-breaker':

10 RE#-. Code-breaker
20 BORDER 2: PRPER 2: INK O: C

30 DIM R(3): DIM Ef3)
FOR Z=1 TO 3

fi: LET	 Z) IN T à RNt' *) +1
1-lat NEXT 77

1 R')

1=0 IF t3 i1: =-R 12) ORR i "11 =:i (3) 0
R R(2) =R i3: THENG O TO 90

130 LET {-R^. _ 1 i?^ 5^ ^- R (1) -s- :i 0 :^ f^ ; 2) -4- A (3) i
^" 4. ^°- FOR S_• = _z TO 10
150 PRINT RT	 0; "This is guess
n fft ber	 INVERSE 1t C
152 INPUT INVERSE 1; "P Lease e n i

e r ‘4our guess ' =E
155 IF i:l>0. 0 OR B>999 THEN GO T

C 1.50
157 PRINT RT C+1,1; INVERSE 1; B

" INVERSE 0,; _. ";
150 LET B :1 -i =TNT t ^ ,`'i ^LY3
170 LET 5#23 =TNT i tB-100*B i1? ?=

'0)
180 LET 5 C33 =TNT [6-100:}5 (1) -10

*B (2))
1g0 IF R=5 THEN GO TO 4-30
200 L: T t=--#=^

--74	 N_^_
-	 –^^

IF
^ --= =1- ^-_	

THEN^-y$4t^`R(E) \ :å3_.

	

l' T.-:^}^	 TO 27
1-,;pp

=^^L• Y_E`^ N=N+12
:F`0 1 FT R(E)=0
271.7t NEXT 4:T E
22'1 0 FOR F=1 TO 3
:_°O=? IF R(F)=0 THEN GO TO 340
300 FOR E =1 TO 3
310 IF BF) ^: P fE3 T??EI`!

^
320 LET i-6 = t,= -i- 1
330 NEXT E
340 NEXT F
350 LET ;? i 1? =T.#T fE?.='1^-^CY_
350 LET :iè22=I14T t t=-1=;i:ii-=r.,_ 1_

10)
370 LET R a.ti; =iNT fit-100TR f 1? -10

?'î'5;2) _
380 PRINT N;- btacX ea}
385 .i.; s't : 1 THEN PRINT -s ' ;
355 IF N = 1 THEN PRINT "
390 PRINT W; - white";
395 IF W<>1 _= 1 THEN PRINT ",r,-
400 NEXT C
410 PRINT RT .i 2. CT ; :,=.a` c.^ u didn't

get it-
420 GO 70 440 0
430 PRINT RT 1$, 0; : 'You got it i

n -;C - guesse _".
440 PRINT ' "'É iui code was -;R 1•^

Magic Star Sums

This program generates a five-pointed star, with a number
on each of the intersections of the lines which make it up.
The numbers in any particular line always sum to the same

183

Brain Gaines

total, much the same as, in a magic square, numbers in a
straight line in any direction sum to the same total.

When you run the program, you'll see that two or three of
the numbers.on the star have been replaced with zeroes. It is
up to you to work out what the needed numbers are in as few
moves as possible.

Here are some `snapshots' from one run:

^ 1ti- ïS -4_

17

>'="iu have _=74 r i -ht _-`< Far
14	 1 î	 ^.^.S	 0

17 You solved a t in . 10 E^ 	 = 	 Z-40-P,

0

14	 3+.=

: ou have 7 ri g ht so Far

=ä	 1f-'-z	 IS	 0

^	 ^ x

tz.

You u have -: right so Far

c.'a1 f	 L::.rrrr.^	 ^ L r	 :^ \. û^=_^ i r^-}

And this is the listing so you can create your own magic
stars:

10 REM MAGIC STARS
_ 	 ti._̂- ._a - #^ÎF?`^ ^=T UPï^ 3 ^iR,: 1741-1 SUB. 340: REM PRINT STAR

40 i--_ `AJz 7:71: i-=iFM ASK FOR CUES

S O GO TO 30
SO g3°=è,z.:_:? :^**r* =̂ ** * *-Ys}***s

REM L M ASK FOR GUESS
SO IF SCORE >n AN§= .`_-CL^ ^ •i_^^ -:-tF

	N PRINT AT= _ 	".a^t¢ ?___ _	 _ ^ ^rzZri g ht so 	
^;

 Far a	 -a
90 LET =O=L0 }-=

100 PRINT AT INt=E-ssF1;-Go
number , rLASk 1; INK _ PAPER
6 C.O
110 INPUT FLASH 1; INK 2; PAPER

184
	 185

650 LET A fL` -"	 ` --_,, -^ -^^: ^-^•
'^ tL^^ =E=H+L

670 LET Î1 i ày =A TL-
6:3O L ET R?L.j = ti-B-L-t-E
6Q0 LET t=l t S? = A
700 LET A t"? =A+C
710 t_^ LET A(5)=A+5
720 LET A tg3 =r;_-2*B+2*L?i- ^

-Z E r- T ^ - v -\-'	 3l^te i__ !"1tt i ^ r_È ^ _-- ^€ -L_•^i_=T?TE
^_L^ y ^^^ at =1 T^^ t10

750 LET 6(j)=A(J)
760 IF R(J)=0 THEN RUN
770 NEXT T Là
7Se FOR J=1 T O 3
790 LET fi LIr#T :RND}10? +13 =0
Fi00 NEXT J
5 1d RETURN

Hangman
Now we have another old computer favourite, `Hangman',
in which the Spectrum thinks of a word, and the student has
to guess it before being hanged. The number of guesses is
related to the length of the word.

As you can see from lines 500 to 546, the program comes
complete with a starting vocabulary. However, you can
make the game much more useful by replacing this
vocabulary with a series of words which either relate
specifically to your school, or to a particular subject (such as
the names of minerals being studied).

The game is simple to play, and the modus operandi will
be made clear if you study this sample run:

You have t o g uess m ;i word in
Just 13 guesses

Brain Games • • Brain Gaines

#. e å an; number which you",-think

1=0 LET .`_=i-O7'iE=0
140 FOR =3 =1 T= 10 LET

5; "This se go number ": igo? r'Er?

1:=,i if G=A(J)åTHEN3-F si =__^È =^_=si

t`.- part i 4 y }h- star-;G

THEN	
_	 _

360 IF 6(J)<>0 Ti-:EN LET SCORE=-
CORE

170
 _ -	

NEXT -1S0 FOR P =1 -^:^ •^ 0^_^ 	 ^
1^^ iF SCORE <.10 3^å a i }'$^2Y IF	 THEN RETURN
200 REN **:1*****=**T***
210 GO SUE E 340 0
220 0 PRINT AT 18.0	

0,0,-You

	

= t= i '± e d it in Just "_ ^_^_ r,	 ^=—
,= +:e- 0 FOR R '^ = i -i O 100: i NEXT `r r
250 PRINT . PRINT FLASH I r ?r es

s ``}°- if you'd tike another - , -go
or 'N' to stop> >`

250 LET AS=INKEY $
270 IF A$<› - Y - AND ASt?.ay:r AND

A.ik. t)-N_ AND A$ t` n' THEN GO T O 2

300 IF A$ = "':' ` OR g?^=.rk-t:r T!--1 E$'! RU

ii
_	 _

_R Y--_T -;T 3L' r;i.' , "ÿ ii 	_ a_ ^ aà{.ti .
or ..r̂• L a P r: t: _ STOP L_} P

r4EF-? :r*-.r**-*}-a; *******31
7=40 REN PRINT ST AR
:i_b PRINT AT 4,7 .;B(I) 	 _

PRINT RT _
_

: E q=)
>,	 ar

e E t a:3

8f4-3 "	 `; B CS)
• 4 0 C-I PR 3 NT AT 8 :	 5 : S ? _ , ,	 .. _ R

PRINT ; #``!T AT 1@,7;E;16)
PRINT AT 12,56k9)

RETURN
REM $***$**-**=}3*±-**
RFN	 UP STAR

S

_ _ _
^ it? D T€-i ri € 1=_ _ _ DIM _ a_ t - -
520 LET L o = 0

LET a -
^_•^.^+RF -^3 [r

540^ LET :y I^i	 (:'^e.•{`:i^^*g) }1
550 LET z -INf s 	 D '2 =

LaT C=INT	 ^^T
	* € S

570
LEi L. =.iT-åi t3,ar:L4&W $^	 _

590 IF R =- 5 OR ^ tz = L- OR€1==D L_E R R=E
THEN Gn TO 550
500 IF E=L=- OR 5=D OR B=E T€-tE_, G

T2 ; ^^à =
610 IF C=i GP C=E THEN Gn TO 55

620 IF D=E THEN GO TO 55=O
630 LET X=T5'vT i^r'3Î= ___! t_
640 LET r i i' ___

4-20
4 4 0

470
480

You have 0 correct Letters

You have ï..Z chances Left

You have to g uess m°--i word in
_:LS= } 11 guesses
EANWOI

186
187

Here's the listing of 'Hangman':

REM HANGMAN
PAPER 1: BORDER

LET Y=0
RANDOMIZE
FOR 6=1 TO RND*224-1
READR$
NEXT G
GO SUB 480
LET N=LEN RS
DIM 504): DIM D7iN1
FOR 0=1 TO N
LET B(G)=CODE R$-G)
LET DiG=BiG1

,e

LS
4zA
1=0
60
go

100e

/30
14:7!

.1_ .

Brain Gaines • • Brain Gaines

You have 5 correct etteC-

Yo have	 chances teft

YOU have 110 qUESS M4 word in
Aust 11 guesses
ERMWOIDR

MERMAID

INK 7: C

170 LET 0=TNT 0.4+N./2+.5)
180 PRINT AT 0G; "You have to q

uess mu word in" ,-just -;0;" que

200 GO SUB 480
210 FOR J=1 TO 0: LET Y=Y+1
220 GO SUB 400

THEN
240 PRINT RT 18,

chances te
250 INPUT "Enter

255 PRINT AT 2,2
260 LET F=CODE C
270 FOR 6=1 TO N
280 IF D:G)=F TH

LET J=J-1
2S0 NEXT G: NEXT J
300 GO SUE 480
310 GO SUB 400
320 PRINT RT 12,0;-

-;AT

15; ; "I	 SOFFLi
ge t 	"

GO TO 37e
;40 PRTNT PT - ,

-;1117 1
8,0-Uhew. You've staved ff-„-e
xeclition for anoth=r
360 PRINT AT 100:-You g ot i t

n ":Y-1:- guesses--
370 PR 1- NT AT -1=' ,0'.;-11,._4 word was

";R$
STOP

400 LET H=0: PRINT AT 4,q;
410 FOR E=1 TO N
420 IF B(E)=D(E) THEN PRINT ---

430 IF Ei(E)<>Dt-E THEN
ASH 1; INK 2;CHR$ BfE); FLASH

INK 7:: LETH=H+1
440 NEXT E
450 PRINT AT 12,0;"You have

correct Lette
470 RETURN
480 FOR P=1 TO 30: BEEP .00ia,RN

D*40: NEXT P
430 RETURN
500 DATA "MERIDIAN-,"MERIT-s-ME

AMAID-."MERRIMENT"
510 DATA -OVERSEEROXIDANT",-

OXYGEN".-PALPABLE",-UNORTHODOX"
520 DATA "PANDEMONIUM",-PANEGYR

IC".-PARADOXICAL",-PHERSANT"
530 DATA "RUMPUS".-RUMMAGE-,-SA

CRRMENT" - 6A6RE - , - 5CNEMRTIC-
540 DATA "SEDIMENT-,-5EXAGENARI

TEMPERATE-,-TELESCOPE -

You got it in	 guesses

MQ word was MERMAID

Whew. YOU ' VE staved off
execution for another day.

0;-You have
Ft	 "
your guess

*Y-1; C$

EN LET r=iG)=0:

18,f,N;-
";AT

but you didnt

Fl

•

1 Q Q
	 189

•
Kimspot
Finally in this chapter, we have `The Kimspot Game',
written by Derek Cook, who says it has given him and his
family (aged 13 and 11) a great deal of mental stimulation.

The program is a combination of the old Kim's Game and
the new `Spot the Ball'. It can help teach children the
rudiments of coordinate geometry, as well as the ability to
recognise and retain shapes. As you'll see when you run it,
the program makes very effective use of such Spectrum
facilities as FLASH, BEEP and colour.

This is the listing for `The Kimspot Game':

s: PRINT "(L.L.COON: 19	 "
20 BORDER 2: INK 1: FLRSH 1: P

RINT AT 11, 5; "THE K IH55PC!T GAME"
30 PR USE 100: BORDER 1: INK 2:

PRINT RT 11,2; "Type "'•ENTER•,
or _a,_truction="

40 INPUT q$: FL _• H n
6:0 BORDER 1
c40 RRNr‘.01‘11-77F
5 CL-`

100 DIN d$ (2,3)
110 FOR a =1 TO 5
1 2 0 LET b=TNT (RND*3+1:s
1 30 LET : =INT iRNL> -3+1:s
135 IF d$ (b, c) ="*" THEN GO TO 1

140 LET d $ (b c ! ="*"
15n NEXT a

_ 5 PRINT "You are Lookin g for:

160 FOR e =1 TO 3
1707 FOR f =1 TO 3150 IF d$ (e, f) ="*" THEN INK 2:

d	
o$ t + f ,	 F

' ="* to THEN FLASH 1: PRIT

1 g 0 NEXT f
200 NEXT e
210 FL RSH
230 PRINT"Remember the shape
refu!iy!'•
250 PRINT "The shape i_ hidden

in a square:"
260 INK 1: FOR a=1 TO 10
27 0 PRINT "
_å0 NE 	 a
300 PRINT -of 100 doors. To ope

,. e r_lo '_. -	 type i t= its-7r dinat
es .3s x	 (ENTER> , y <ENTER>

you are	 SUre you remember th
e shape y ou are iookin'y For, type

ENTER	 to ptay"
`10 INPUT c $

- l •_ L °• : LET v=0
:330 LET p=INT iRNCD*E:4-1c

Brain Games

_̂;i t1 LET q=INT (RNL^*8f-1)
iE0 FOR a =0 TO 9
380 PRINT RT eta , 10; 9-a
370 FOR b=t` t̂ TO '^t

3E0 PRINT RT 64-b, 11ta; "2"
::: q 0 NEXT b
400 PRINT FIT 1E 114-a; a
4-10 NEXT a
4.15 FOR n=1 TO 100
420 INPUT "Type Co-or,3inate=" ^430 INPUT y
4.32 PRINT AT 20 ; 1_ n: " goes"
435 IF NOT ((.i =p OR 1 =p a-1 OR x=p-13 FIND (y=s OR y=g+1 OR y=q-1 .:s? THEN r40 SUR BOO
440 IF d $ t 2 4-q -y , 2 -p t:i ! _ ' ;c" THEN
GO L- Lt E 600
4.E0 IF d$(2+q -y,2-p-l-*ci <>'•}" Tk-i.C.Go s UB 700
455 IF v=.5 THEN GO TO 900
:iE,C+ NEXT n
S q n E,TnP
600 FLFiSH 1: INK 2: PRINT FIT 15

- tia . 11 -I- ^c ^
•, g..

e>`̂ 5 LET=t+ 4-1L.G^7 ap̂ ^ F .r
610 RETURN
690 STOP
700 FLR5H 0: INK 2: PRINT RT 1-- u , 1 1-t .^ : • • , î . .
t'10 R ETLsRhI
800 FLASH 0: INK 2: PRINT RT 15-61,114-:i; "a"
51C7 GO TO 460
900 FLPE.H 1: PRINT AT 2,0;-Youfound it ii?
9-

.5.30:
 ßEPiSEER2l^c BE

E
P .5,25: BEE

rq2L^ FLt^^H ^: PRÎl^IT AT 4, 0; "Ano ther g ame? y zn"
sia,0 INPUT m$
940 IF ra $="y " THEN GO TO n^950 IF Iw $=.•n .. THEW, C-.n,r	 ^

• Brain Games

190 191

• Some /final thoughts

CHAPTER SEVENTEEN

Some Final Thoughts

Computers are particularly useful when viewed as aids to,
rather than replacements for, teaching by teachers. In one
area, that of individual coaching and testing, a machine can
provide assistance of a type which would be impossible
(because of the time and attention required) for a teacher
with an entire class to look after.

One teacher who is enthusiastic about the use of
microcomputers for work of this type says he uses his
school's computers for review work for fourth and fifth year
French students, and for remedial work with first year
students. Any beginning student whose work is not
satisfactory is required to go through 'drill' with the
computer after school. The teacher reports that the number
of students who failed the course dropped significantly.*

Another school entered the computer age with a cast-off
machine from a local company. They found that student
interest in using the machine grew as the number of
available programs grew. Early programs were not
particularly sophisticated, and included such things as
finding objects on 10 by 10 grids, and working out
biorhythms; yet the school found that student interest was
very high long before the computer was integrated formally
into the curriculum (see 'The Micro iii a Small School',
Interface Age, October 1979, p. 64).

Although this was before microcomputers were
widespread, and therefore computers had a somewhat
higher novelty value than they have now, the lesson of
interest being proportional to available programs probably
holds true for the Spectrum.

*Computer Assisted Instruction — Worth The Effort?, F
Keplinger, Compute! magazine, August 1981, p. 40.

When writing programs for school use, keep in mind the
fairly obvious fact that a student learns best (or at least is
more likely to pay attention) when he or she is interested
and involved. Do all you can to ensure your programs
address the twin needs of interest and involvement.

A need to learn something (for example, in order to pass a
test) can, however, be so pressing that a student will learn,
at least to some extent, material whose presentation is
entirely lacking in interest or any real involvement.

One of the great advantages of the computer-as-teacher
over the human-as-teacher is the infinite patience of the
machine. The Spectrum can be programmed to react to the
learning speed of the student, ensuring that a slow student is
not so frustrated that he or she is unable to sustain interest in
the material.

You may find resistance within your school to the use of
the Spectrum. Many things have been hailed as great aids to
teachers in the past, only to be found wanting. An
experience of this type, and a suspicion that students playng
with computers are not doing anything which should be
within the school curriculum can create attitudes which
hinder a wider use of Spectrums within your school.

The school Spectrums must not be treated like immensely
valuable objects, to be accessed only in formal class
situations. Among other things, students are learning
familiarity with computers. This is probably equally as
important as any formal studies done with the machine.
Computers will occupy a very large part of most of your
students' futures, and anything which increases their ease in
working with them seems to me to be worthwhile.

Therefore, check yourself if you are on the verge of
stopping somebody using the Spectrum because they are
`just playing'. Feeling good about the machine will make it
simpler to engage the student in other forms of computer
use, and will therefore ultimately aid you in using the
computer more directly for school work.

Of course a degree of supervision will probably be
advisable (even if only to make sure the computers don't
leave the room in school bags). However, if the Spectrum or
Spectrums can be made available at lunchtimes, and after
school, this is all to the good. Let your students make full
use of the machines you've bought. Encourage them to write
their own programs, and to bring original programs from

192 193

Some final thoughts

home to show to other students. Do anything to foster a
situation in which access to the machines is easy, and the
formalities of using them is kept at a minimum.

APPENDIX A

A suggested Test Paper on Spectrum
BASIC

1. What do you find at the bottom left hand corner of the
screen when you touch any key after first turning the
computer on?

2. What does it signify?

3. What would you type into the computer to:
(a) add 3 and 4 together
(b) divide 8 by 4
(c) multiply 7 by 8

4. What does	 mean?

5. What is the difference between the zero and the letter
`O' when printed by the computer?

6. (a)What does the CAPS SHIFT key do? Give an
example?

(b) What does the SYMBOL SHIFT key do? Give an
example.

7. What do you see when you PRINT the following (after
pressing the ENTER key?

(a) 1 2 3 4
(b) 1;2;3;4
(c) 1,2,3,4
(d) 1.2
(e) 1 „2

8. What do you call a row of letters or numbers enclosed
in " "?

9. If you wanted to PRINT the word SPECTRUM on the
screen, how would you type it?

10. Re-write the following correctly, so they will work on
the Spectrum.

194
195

•Appendices •
(a) PRINT SWIMMING IS FUN
(b) PRINT "THE GIRL IS"17 YEARS OLD"

11. Name three of the functions available on the Spectrum
keyboard.

12. (a) How do you obtain a function?
(b) Give one example.

13. What does PRINT AT 11, 16 mean?

14. Correct this line (so it will work on the Spectrum):
PRINT AT 11,16 "THE BUS IS RED

15. Imagine your Spectrum is turned on in front of you.
You type in the following:

LET A = 1 (then press ENTER)
LET B = 2 (then press ENTER)
LET C = 3 (then press ENTER)

What would you see if you did the following:
(a) PRINT A;B;C
(b) PRINT A + B,C
(c) PRINT A + C — B

16. How do you get PI on the Spectrum?

17. Complete this program:
10 INPUT "radius ";r
20 PRINT "the area of a circle is ";

18. After line 10 below what should line 20 be to get the
Spectrum to print the word DOG over and over again?

10 PRINT "DOG ";

19. Invent a simple program of four lines, and say what
happens when you RUN it.

20. How do you count from 1 to 10 using FOR and NEXT?
Include a simple program with your answer.

APPENDIX B

Ideas for Exercises and Programs

This appendix contains a number of ideas which you can
convert into exercise material for your students to help them
develop the skill of writing a program to solve a specific
problem, or achieve a specific aim. Other ideas will perhaps
strike you as more suitable to use as starting points for
programs for you to develop to use in your classes.

Develop a program, or series of programs to demonstrate
the relationship between speed, time and distance.

Illustrate the properties of light (shadows, reflections and
the principles of light travelling in straight lines).

Demonstrate the basic theory of electric current
graphically on the Spectrum.

Archimedes principle (floating, sinking and density) is
another subject which would lend itself to an animated
display.

Sentence construction, word sequencing and other
language skills could be tested by programs (note that these
are not particularly easy to write).

Race games can be written, in which children answer, say,
maths questions, and each correct answer means that the
child's `car' advances one step. This would require at least
two children to have access to the Spectrum at the same
time.

Programs based on the `15-tiles' puzzles in which `tiles'
containing letters or numbers must be slid around to get into
a pre-determined sequence have proved popular as games.

You could ask students to write programs to achieve the
ends of many of the programs in this book, such as many of
the shorter ones in the mathematics chapter. For example,
you could ask your students to write a program, which, given
a positive whole number, will calculate the factorial (N!) of
that number.

Using the formula Interest = Principal * Rate * Time/100,

196 197

•
get students to write a program to show interest gained over
various time periods, with differing principals and interest
rates (you could then ask them to do the same thing with the
formula for compound interest).

Produce a table of square- and cube-roots for numbers in
a specified range.

APPENDIX C

Binary converter

This is the full list of decimal numbers from zero to 255, and
their binary equivalents. It is designed to help you when you
are producing your own graphics, so save you having to
convert from binary numbers to their decimal equivalents to
put into DATA statements.

Just in case you're interested, the program which
produced the list is printed after it.

00000000
1	 00000001
^	 070l0ic-it-^Tt
3	 000000 11
^	 00000100

00000101
^	 00000110
7	 00000111

00001000
?	 00001001
10	 0^-^t001010
11	 00001011

00001100
13	 0000 11.01
14	 `000111e`TE
15	 0000 111.118	 L00100 00
17	 0001000 1
14	 00010010
13	 00010011
20	 00010i00
21	 00010101

00010110
23	 00010111
24	 0L,ce^110i, 0

00012001
25	 00011010

00011011
25	 00011100

00011101
30	 00011110
31	 00021111
32	 00 1 00070

oo 2ooeat
34	 0010001:0
35	 00100011

199

Appendices •

198

•Appendices • Appendices

36 00100100 olleoole
,_e 00100101 gg 01100011–0--)c.,:,,,c, 00100110

oØ155i11 100
101

01100100
01100101

40 00101000 102 0110011041 00101001	 103 011001114 2 00101510	 104 0110100043 00101011	 1 5 0 0110100144 00101100	 106 0110101045 00101101	 107 01101011
4 5 00101110	 108 01101100
47 00101111	 10 9 0110110145 00110000	 000 011011104S 00110001	 111 01101111
50 00110010	 112 01110000
51
5 ='--;'
54
55

57585980616 0*83545500000700.080970717 073
74
7576,..-,,	 :00,0
79--a,,,,,
51
52
,-...,
64.

00110011	 113
00110100	 114
00110101	 115
00110110	 116
00110111	 117
0011100000111001	 11 6
00111010	 120
00111011001111000011110100111110	 124
0011111101000000	 126
01000001	 1 00

1260100001001000011	 129
01000100	 130
01000101	 10110000100011001000111	 1 33
01001000	 134
0100100 1 	135
01001010	 136
01001011	 137
01001100	 135
01001101	 139
01001110	 140
01001111	 141
01010000	 142
01010001	 143
01010010	 144
O1015011	 145
01010100	 146

01110001011100100111001101110100011101010111011001110111011110000111100101111010011110110111110001111101011111100111111110000000100000011000001010000011100001001000010110000110
100001111000100010001001100010101000101110001100100011011000211010001111100100001001000110010010

8586
575889g o
9 1
9 001 3
9 4
9
95
= i

01010101	 147
01010110	 143
01010111	 149
01011000	 150
01011001	 151
01011010	 152
01011011	 1001
01011100	 154
0101110 1 	155
01011110	 156
01011111	 5:77
01100000	 153
01100001	 159

10010011100101001001010110010110100101111001100010011001100110101001101110011100100111011001111010011111

202 203

Appendices

15 t-^ 1 0 100000
151 10 10000 1
162 101000'1 0
153 10100011
154 10101100
155 -1.0100101
155 101.0011.0
167 10'1t-1P0111
158 10101000
159 10101001
170 10101010
171 10101011
172 10101100
A ^''3 10101102
174 10101110
s-TC 10101111
176 t5 1011.0000
1+r 10110001
1?5 10 110010
17^-? 10110011
1.60 10110 100
1i '1 10110101^w5^ ,1,. 0̂- 110110
153 10110111
134 10111000
135 10111001
1ca6 10111010
157 10111011
133 10111100
138 10111101
190 10111110
191 10111111
192 1104.100 00
193 11000001
1 .q 4 4 /1000010
195 11000011
195 11000100
197 11000 101 1
198 1 1000 110
199 11000/11
^O0 11001000
201 11001001
-D 0'm 11001010
203 1100 1011
204 11001100
205 110011.02
206207
*03
209
210
21 1
212
213
2 14

11i2+01110110011111101000011010001110100 101101001111tr^ 10100
11010'1011101011011010111

_15
217
215219220
=^1

/1011000110110011101101011011811
1 1i? 11.100
11011101

• Appendices

^'v3
224
005
:7=2?
228
229
230
^3 1
232
233
234
235
20,
-m'35
2,a-0
241 1
243
244
245
'=45
247
245249
251
253
254
255

11011110
1 1 01 1 11 1
111000001 1 100001
111000 10
11100Cf 1111100100
11100 101
11100110
11100111
11101000
11101001
11101010
11101011
11101100
11101101
11101110
11101111
11 110000
11110001
1111 0L-3 10
11110011
11110100
11110101
11110110
11110111
11111000
111110^.̂ 111111010
111110 11
11111100
11111101
11111110
11111111

5 REM BINARY NUMBERS
5 REM By Jeremy Ruston
7 REM from 'Pro g ramming the

ZX Spectrum'10 FOR B=0 TO 255
20 LET J=B
30 LET R$=""
40 FOR N=0 TO 7
50 LET T=J-INT (J/2) *2
50 IF T=0 THEN LET R$="0"+R$
70 IF T<>0 THEN LET A$="1"+A$
50 LET J=INT (J/2)
90 NEXT N

100 LPRINT 5; TRB 7;R$
110 NEXT B

• • Appendices

APPENDIX D

Logo, and an introduction to turtle

graphics

Logo is quite different from BASIC. It was designed with
the lofty aim of being a language which would `teach
learning' and, to a certain extent, this aim has been realised.

Pioneered by Dr Simon Papert when he was a Professor of
Mathematics and Education at the Massachusetts Institute
of Technology in the US (he has now moved to France
where he is one of the leaders of the World Computer
Centre), Logo is intended to be the very first programming
language a person learns. The first language you learn
inevitably colours the way you program, and the way you
think about programming, for the rest of our life.
Proponents of Logo claim that the base provided by initial
exposure to Logo is a far more suitable one for future
programming excellence than is a language such as BASIC.

Is there a basis for such a claim? Papert says that many
teachers have only seen computers as devices which can
extend the transitional ways of doing things in the
classroom, rather than as utterly new teaching tools. In
contrast to this, Papert says Logo is a liberating device,
which enables computers to be used to teach new and
important skills, including the skill of `learning how to
learn'.

Following observations made by Jean Piaget that children
are able to learn quite complex skills – such as being able to
talk and walk – without formal training, and the fact that this
highly-effective informality was absent in traditional
classroom teaching, Papert set out to create a language
which would remedy this deficiency. Papert says most school
instruction in computer programming puts the child almost
in the position of being programmed by the computer. Logo,
by contrast, puts the child firmly in charge.

It does this by allowing the programmer to create new
shapes and actions – such as one which draws a triangle –

and then get the computer to execute this on demand,
simply by entering TRIANGLE. BASIC has no such way of
creating new commands and functions.

Put just about anyone in France, and let them live there a
while, and they will become skilled French speakers, even if
they had a prior concept of themselves as 'not good with
languages'. The same holds true for mathematics, claims
Papert. Part of Logo's function is to allow user to `live in
Mathland' where there is no such thing as a person who is
`not good at Maths'. (In an article `Logo in the Schools'
(BYTE magazine, August 1982, pp. 116-134), Daniel Watt
reports that `teachers found that students who had taken
part in the Logo classes were more willing to 'argue sensibly
about mathematical issues' and to explain their
`mathematical difficulties clearly'.')

When computers were first developed, memory was at a
premium. Programmers had to bend their thinking to the
demands of the machine (such as integer variable name
starting with specific letters), regardless of how much extra
work this added. The thinking that human beings should
continue to humble themselves before the computer's
demands has continued. Although BASIC is relatively easy
for a computer to interpret, and easy to teach, it is not a
flexible language, and labyrinthine program constructions
are sometimes needed. Papert and his team at MIT decided
when developing Logo that they would not allow their work
to be limited by computer technology. Rather than gear
their thinking to the cheap (for the time) computers
available when they began their work in the late sixties, the
team worked with the biggest mainframes they could.

The most familiar aspect of Logo is `turtle graphics' when
the computer controls the movement of a 'turtle' (a
triangular shape on the screen) which leaves a trail behind it
as it moves. Therefore, if the turtle moves up the screen for
an inch, turns through 90 degrees and moves another inch,
turns and moves, turns and moves again, it will have traced
out a square.

Turtles move in 'turtle steps' (with a screen being about
200 turtle steps high). A turtle command is often in the form
of a direction (such as FORWARD) followed by the number
of turtle steps, so FORWARD 100 would cause the turtle to
move half way up the screen (FORWARD is the direction
the triangular cursor is facing).

204 205

Appendices • • Appendices

With Logo, the computer can be taught a sequence of
moves, such as the one we described to trace out a square,
and the sequence can be `remembered' by the computer
under the name, say, SQUARE. Then, whenever we want
the turtle to draw a square, we just enter SQUARE.

A sequence of moves like this is called a procedure. The
process of drawing a square could be even simpler. Think of
FORWARD 100. The computer draws a line up the screen.
The word RIGHT followed by a number turns the turtle to
the right the number of degrees specified by the following
number, so RIGHT 90 will make it turn through a right
angle. Moving FORWARD I0 again will draw a line at
right angles to the first. Follow this with RIGHT 90 and the
turtle will turn through another 90 degrees (and will now be
facing down the screen). Going through the sequence
FORWARD 100 RIGHT 90 four times will draw a square.

This should give us a hint as to how the procedure
SQUARE can be created more simply. The Logo word
REPEAT means just that. A number follows REPEAT, and
the computer repeats the instruction which follows the
number however many times are specified. So, to create a
square-drawing program, we need the following:

TO SQUARE
REPEAT 4 [FORWARD 100 RIGHT 90]
END

Note that the first line of this program, TO SQUARE, is
the procedure title line. Run it, and the computer then
knows what a square is, and can produce one, whenever it
encounters the command SQUARE. As I'm sure you can
appreciate, there is no such facility in BASIC for creating
new commands at will.

Logo has other useful commands, such as
CLEARSCREEN, and PENUP (which `lift the pen' from
the screen) and PENDOWN. You can draw a line, lift the
pen up and move it to another part of the screen, put the pen
down and continue drawing.

Looking back to our definition of the procedure
SQUARE above. You can see that if we had a way of
entering the size (the 100 in our example) each time we ran
the program, SQUARE could be used to draw squares of
any size. Logo allows for this. If you include the variable
name in the procedure title line, preceded by a colon, the

computer will wait for you to enter the required
information.

TO SQUARE :LENGTH
REPEAT 4 [FORWARD :LENGTH RIGHT 90]
END

To run this, you enter SQUARE 64 (replacing 64 with the
side length you choose).

From this, it is easy to see that we could do much more
than just change the length of the side. We could easily
define a procedure which allows you to specify not only the
length of the side, but the number of repeats, and the angle
through which the turtle will turn. If you're creating mental
pictures of the effects of each of these changes, you'll see
what a powerful tool we now have on our hands.

TO SHAPE :MANY :ANGLE :LENGTH
REPEAT :MANY [FORWARD :LENGTH RIGHT

:ANGLE]
END

This simple procedure holds a wealth of extraordinary
effects.

To draw a triangle, with sides 35 steps long, you'd just
enter:

SHAPE 3 120 35

A star with each line 55 steps long could be drawn with:

SHAPE 5 144 55

We will end our brief introduction to turtle graphics by
pointing out that once the computer has been taught a word
such. as SQUARE, this procedure can be used within further
definitions. That is, if you wanted the computer to print a
shape, then move just a little to the side, then draw the
shape again, and repeat this a number of times, you could
define the following procedure (assuming that the procedure
SQUARE had previously been defined):

TO AMAZING :MANY
REPEAT :MANY [SQUARE 50 FORWARD 1]
END

There are four important features of Logo:
PROCEDURES: the language works by defining

206	 207

Appendices i
sequences of steps called procedures which are then called.
Procedures can incorporate other procedures. The closest
BASIC equivalent (and it is generally NOT helpful to learn
Logo by drawing attention to barely-equivalent BASIC
statements) would be a series of subroutines which were
called by name (such as GOSUB PAUSE, where PAUSE
was a variable which had previously been assigned a value of
the line number where the subroutine PAUSE began).

INTERACTION: Any command, whether it is one which
is part of the original language (such as FORWARD or
PENUP) or one defined as a procedure, can be triggered
just by entering the command, such as the word SHAPE or
SQUARE.

LISTS: The language supports compound structures
called lists which are much easier to manipulate than are
data structures such as arrays. They can be manipulated very
flexibly. Procedures can he handled as lists.

TURTLE GEOMETRY: The `cybernetic animal', the
turtle, will follow instructions to draw shapes on the screen.
Turtle graphics have proved an ideal way of introducing the
concept and practice of computer programming, and also as
the basis upon which a computer-based mathematics
curriculum can be built.

Further reading on Logo:

Mindstorms: Children, Computers and Powerful Ideas –
Simon Papert (Basic Books, New York, 1980)

Logo for the Apple II – Harold Abelson (BYTE/McGraw
Hill, Peterborough, 1982)

Learning Logo on the Apple II – Anne McDougall, Tony
Adams, Pauline Adams (Prentice-Hall of Australia, 1982)

The August 1982 (Volume 7, number 8) issue of BYTE
magazine is dedicated to Logo and is an extremely useful
introduction to both the language, and to its implications.

APPENDIX E

PROLOG — PROgramming in LOGic

In 1972. work by Kowalski, Colmerauer and Robinson
culminated in Colmerauer's implementation of a new
computer language PROLOG. Logic has existed since
Ancient Greek times as an accurate language for expressing
problems. PROLOG allows problems descriptions written
in a form of logic to be run on a computer.

Since 1972 many implementation of PROLOG have been
written for different machines. Now, a version of the
language, micro-PROLOG [Clark, Ennals and McCabe
1981], [Clark and McCabe 1983], has been produced for the
Sinclair Spectrum. Micro-PROLOG is a full implementation
of PROLOG for microcomputers and the Sinclair version
also supports the sound and graphics capabilities of the
machine.

The language can be used in many different ways and for
many different applications. One of its most powerful
features is the ease with which it can be customized for a
particular application by constructing a `front-end'. This is a
program that allows the use of the language in a particular
manner by providing various operations. As an example a
`front-end' might be written to provide LOGO-style
graphics [Steel 1983a].

At Imperial College, London a front-end called Simple
[Ennals 1982] was developed for use in schools. Work in this
area is by no means complete and new versions are under
development at the present time. Simple is provided as part
of the micro-PROLOG package for the ZX Spectrum. All
the PROLOG in this chapter will use the Simple front-end
syntax.

Learning to describe problems

In order to learn to program in PROLOG very few

•

"nQ 209

Appendices	 •

`traditional' computing ideas are necessary. What is
necessary is the ability to describe things clearly and
accurately. As an example, we will examine PROLOG's use
in exploring woodland ecology [Steel 1983b]. This subject is
sufficiently well understood by non experts to be explored
without us having to learn the subject first. It has formed the
basis for a number of introductory courses for teachers
learning PROLOG.

A program usually starts with a collection of simple facts.

owl is-a bird
sparrow is-a bird
fly is-a insect
hogweed is-a herb
beech is-a tree
DDT is-a insecticide
mole is-a mammal
mole eats hogweed
sparrow eats seeds

Facts such as these can be given to the computer exactly as
they are, using the Simple command add O.
e.g. add (owl is-a bird)

Small changes have to be made to the English sentences
we would normally use in order that they are accepted by
Simple PROLOG. Each sentence, in this case, has been split
into three parts: the names of two objects and a relationship
between them. Hyphens are used when we would normally
use a space in English.

Rules, connecting these facts, can also be added.

x is-a plant if x is-a herb (i.e. something is a plant if it is
a herb)
x is-a plant if x is-a tree
x is-a animal if x is-a bird
x is-a animal if x is-a mammal
x eats y

if x is-a bird
and y is-a insect

In these rules x and y are variables. They stand for
unknown values. The last rule contains the information that
all birds eat insects. We will complete our ecology example
with a few more rules.

210

Appendices

x bad-for y if x eats y
x bad-for y if x is-a insecticide

and y is-a insect
x bad-for y if y is-a plant

and x eats seeds

Once a collection of facts and rules have been established,
the Simple front-end provides a set of questions that can be
asked to use the information. The first sort of question
checks that some fact is known by the computer. Does the
computer know, for example, that a mole is an animal? We
can ask this question as follows.

does (mole is-a animal)
YES

Only information known by the computer is used to
answer the questions asked. Sometimes this will lead to
surprising answers.

does (cat is-a animal)
NO

The computers answer NO because it does not know
about a cat.

A much more powerful question is provided when a
YES/NO answer is insufficient. It will allow us to find out
what an owl eats.

which (x: owl eats x)

i.e. in English (give an x such that owl eats x)

answer is fly
no (more) answers

A which question may produce more than one answer and
its form can be more general.

which ((x y): x bad-for y)

i.e. (give x and y such that x is bad for y)

answer is (mole hogweed)
answer is (sparrow seeds)
answer is (owl fly)
answer is (sparrow fly)
answer is (DDT fly)
answer is (sparrow hogweed)

211

Appendices
	 •

answer is (sparrow beech)
no (more) answers

It is important to see that PROLOG uses rules to find
answers to questions. Unlike database query packages much
of the information can be generalised. Writing such general
rules is a useful activity for a class learning a particular topic.

A third question that is particularly useful in a learning
environment is why. This allows the computer to explain the
rules it has used in obtaining an answer to a which or does
question.

why (sparrow bad-for hogweed)
(sparrow bad-for hogweed) shown by

(hogweed is-a plant) and
(sparrow eats seeds)

(hogweed is-a plant) shown by
(hogweed is-a herb)

(hogweed is-a herb) is given
(sparrow eats seeds) is given

Expert Systems

Programs, similar to this simple ecology example, could be
written for numerous different school subject areas. On a
larger scale programs using the same ideas are being written
to help doctors, lawyers and planners. These are known as
expert systems: systems that encapsulate the specialist
knowledge of an expert. Once constructed these programs
can be consulted to answer questions, they can explain their
answers and with a different `front-end' they can ask
questions themselves, putting the expert system in the role
of the teacher.

Within the next ten years we may see expert systems
replacing the computing packages being used in schools
today. By using PROLOG it is possible to explore these
ideas now, constructing or consulting expertise in areas of
history, geography or the sciences.

Acknowledgement

Work by the author, on Logic as a Computer Language for
Children, is supported by Sinclair Research Ltd,
Cambridge.

• Appendices

References

[Clark, Ennals and McCabe 1981]
Clark K L, Ennals J R, McCabe F G, A micro-PROLOG
Primer, Logic Programming Associates Ltd, 1981.

[Clark, McCabe 1983]
Clark K L, McCabe F G (eds), micro-PROLOG:
Programming in Logic, Prentice-Hall (to be published
1983).

[Ennals 1982]
Ennals J R, Beginning micro-PROLOG, Ellis Horwood
and Heinemann Computers in Education 1982.

[Steel 1983a]
Steel B D, North Star Advantage Graphics in micro-
PROLOG 3.0, Department of Computing, Imperial
College.

[Steel 1983b]
Steel B D, An Expert System Workshop (unpublished).

212 213

•
APPENDIX F

Software houses with Spectrum
educational software

(As with magazines, with new ones being born each week,
new software houses appear to spring up each day. Refer to
the magazines in the previous appendix for details of new
companies. This list is of houses which have been around –
comparatively speaking – a long time. The inclusion of a
company in this list is not necessarily an endorsement of its
products, and non-inclusion of any company in this list does
not infer or imply anything regarding the products
distributed by that company.)

Calpac Computer Software,
108 Hermitage Woods Crescent,
St Johns, Woking, Surrey GU21 IUF

Junior Education. Eight programs for 7 to 11–age group
English, Maths, Science, etc. O and CSE Chemistry.
Elements, structure, bonding, etc

E.Z.U.G. (Educational ZX Users' Group),
Highgate School, Birmingham 12

Large number of tested programs

Rose Cassettes,
148 Widney Lane, Solihull,
West Midlands, B91 3LH

Intermediate Maths 1 & 2, English 1 & 2, 0 level French
revision, maths revision, arithmetic for the under eights,
educational quiz

SCISOFT,
5 Minster Gardens, Newthorpe,
Eastwood, Notts., NG16 2AT

O and CSE study/revision packs in Physics, Chemistry,
Biology, Computer studies (logic gates, etc.), Maths part
1 & 2, Teacher's Markbook, junior Jungle Maths,
Astromaths, Magic Spell

• Appendices

Simon Software,
FREEPOST,
New End, Redditch, Worcestershire

11 to 16 age range. Maths 1, 2, 3, 4 & 5, covering area,
ratio, percentages, angles, square roots, indices,
equations, etc.

214	 215

•
APPENDIX G

Publications which regularly include
reviews of Spectrum software

(Please note this list is by no means comprehensive,
although it represents the publications which — at the time
the list was compiled — appeared to give regular, and
indepth, reviews of software. As you know, new periodicals
appear to be launched every week, so you should check your
newsagent for the latest titles.)

ZX Computing,
145 Charing Cross Road,
London, WC2 DEE

Personal Computing Today
145 Charing Cross Road,
London, WC2H OEE
(This magazine contains a

`software checklist')

Your Computer.
IPC Electronic Press,
Quadrant House,
The Quadrant,
Sutton,
Surrey, SA2 5AS

•
APPENDIX H

Suggestions for further reading

Many magazine articles, and several books, have addressed
themselves to the subject of computers and education. I
have followed the published material with much interest. In
this chapter are a number of avenues you may wish to pursue
to continue to develop your knowledge in this area.

Magazine Articles:

Memory Recall Test (V Nasser), Compute!, December
1981, p. 129. The article contains a program written for the
Superboard II but it would be easy to adapt for another
BASIC.

Peripheral Vision Exerciser (Ron Kushnier), Compute!,
September 1982, p. 28. Two versions of the program, which
is intended to increase reading speed, are given. One in a
general form of BASIC and another specifically for the
Atari.

Learning With Computers (Glenn Keiman), Compute!,
September 1982, pp. 96-99. General overview of the field at
that time in America, with a valuable appendix of American
periodicals which cover the field.

The Home Computer as a Teaching Aid (Joe Aitken),
Electronics & Computing, March 1982, pp. 38-39. Article
includes ZX BASIC listings for a letter recognition program,
a flash card program, and a third program which
demonstrates the workings of the N.P.N. transistor.

Which Computer Should a School Buy? (Dan Watt),
Popular Computing, December 1982, pp. 140-144; surveys
six cheap computers and assesses their value for education.

How computation process has changed (John Dawson),
Educational Computing, October 1980, p. 15. From the

Educational Computing,
MAGSUB,
Oakfield House,
Perrymount Road,
Haywards Heath,
West Sussex, RFI16 3HD

Popular Computing Weekly,
Hobhouse Court,
19 Whitcombe Street,
London, WC2

Sinclair User,
ECC Publications,
30-31 Islington Green,
London, Nl 8BJ

216 217

Appendices Appendices•
same issue: Proving that little is always best (Jim Cocallis),
p. 26. Cocallis presents a solid case for buying a number of
cheaper micros to ensure the maximum number of students
have hands-on access to them.

The Micro-Mathematician (Richard R Parry), Interface Age,
December 1980, pp. 36-40. Several methods of plotting
functions are discussed, together with a program to dump
graph output direct to a printer.

Final Exams – Let the Computer Write Them (Bernard
Eisenberg), Creative Computing, November/December
1977, pp. 103-106. Fascinating discussion on how a program
was written to generate a mathematics exam for students on
a remedial course. One examination paper set by the
computer is reproduced in full in the article.

Reading Matters (Mike and Wendy Cook), Practical
Computing, April 1982, pp. 100-102. Article, with program,
to allow the computer to function as a tachistoscope,
presenting a series of letters or figures on the screen at a
given rate to help children or adults with reading difficulties.

Apples, Computers and Teachers (Don Inman), Interface

Age, October 1979, pp. 68-72. Article describes a short
course given to teachers to acquaint them with possible uses
of the computer in schools.

Instructional Software (Walter Koetke), Microcomputing,
July 1981, pp. 20-22. General comments on the standard of
some educational software on the US market, plus a detailed
list of recommended programs.

Two Short Programs of CAI for Teaching BASIC (R.
Hiatt), Compute!, March 1982, pp. 56-60.

Books:

An Introduction to Microcomputers in Teaching, Andrew
Nash and Derek Ball (Hutchinson & Co. Ltd, London,
1982). Recommended without qualification. This is a
detailed introduction to ways in which microcomputers can
be used in teaching. Topics discussed include: Evaluating a
program; Computer graphics versus other means of
presenting pictures; The function of the computer in
learning; Program code and portability.

Microcomputers in the Classroom, Alan Maddison (Hodder
and Stoughton Educational, Sevenoaks, 1982). Another fine
book, which discusses (among many other things) using the
computer as an `electronic blackboard' and computer
managed learning.

Practical Guide to Computers in Education, Peter Coburn et
al. (Addison-Wesley Publishing Company, London, 1982).
This book, plus the two mentioned above, completes the
cornerstone of a solid library on the field. An overview,
complete with examples, of computer applications in the
classroom indicates how wide the potential application of
the machine can be in this area. A warning is also given not
to expect too much when first introducing a computer into a
particular class.

Microcomputers and the 3 R's, Christine Doerr (Hayden
Book Co., Rochelle Park, New Jersey, 1979). Ways of using
computers in schools to increase student motivation to learn,
and a discussion of the capabilities and limitations of
computers in school make this a worthwhile backup volume
to the first three mentioned.

Computer Software for Schools, A Payne, B Hutchings, P
Ayre (Pitman Books Ltd, London, 1982). The authors
explain they were prompted to write this book by the
scarcity of suitable programs for use in schools when they
first investigated computer use in their own school (Oriel
Grammar School). The book contains ten complete
progams, all of them carefully annotated. Programs include
DRAKE (a history simulation), MENU (nutritional analysis
and VERB (French drill exercise).

Microcomputers in Education, ed. Christopher Smith (Ellis
Horwood Ltd, Chichester, 1982). The book brings together
a wide range of contributors, all of whom have practical
experience of computer use in education. It covers many of
the problems that derive from the use of micros in education
and the training of teachers, looking at such applications as
school administration, special education, computer graphics
and classroom experiments.

Microcomputers in Science Teaching, R A Sparkes
(Hutchinson and Co. Ltd, 1982). Although the book is
biased towards use of Commodore PET computers for

218
	

219

•Appendices • Appendices

teaching Physics, the clear (and numerous) programs give
many leads for developing such programs for your own class
use. Program titles include DOUBLE DENSITY GRAPH
PLOT, CHEMICAL NAMES and TRIANGULAR
WAVEFORM OUTPUT.

The ZX Spectrum Explored, Tim Hartnell (Sinclair Browne,
London, 1982). Companion to this volume, covers a wide
field (including business uses of the Spectrum and 3-D
graphics, plus an introduction to machine code). One
section (pp. 77-110) concentrates on educational uses of the
computer. This section was written by Jeff Warren, an
experienced teacher who runs a company selling educational
software for the Spectrum.

Microl Spectrum, USE AND LEARN – 25 BASIC
programs supplied on cassette with 118-page book designed
to show the potential of the Spectrum, and help develop
program-writing skills. Programs include BINARY
SEARCH, SHELL SORT and WORLD ATLAS.

Pocket Computer Primer, Hank Librach (Micro Text
Publications Inc. New York, 1982). Although designed for
use with `pocket computers', as its title indicates, this book
contains a number of easy-to-adapt programs which could be
of interest. Programs include a survival simulation, an
algebra teacher and a program for working out classroom
statistics.

Learning with the Spectrum, Eric Deeson (AVC Software,
Harborne, 1982). Despite its small size, this booklet
contains ten very useful progams, including a `mini-LOGO'
program. The notes on all programs are especially helpful.

Educare's 50 1K Programs for Primary Education on the
ZX81, K S Goh (Educare, London, 1981). Although written
for the ZX81, nearly all programs can easily be converted to
the Spectrum. Programs are divided into categories,
including arithmetic, mathematical concepts, fun with
words, graphics, special topics and `fun and games'.

Pocket Calculator Maths, J Shelton (Collins, Glasgow and
London, 1981). Although written for calculator use, with
care the book can be used with a computer, and should aid
the development of numerical skills.

The Computer Tutor, Gary W Orwig and William S Hodges
(Winthrop Publishers, Inc, Cambridge, Massachusetts,
1982). A number of worthwhile program ideas in this book,
including a ballistics simulation one, and a quiz to test
synonyms and antonyms.

220	 221

• • Appendices

APPENDIX I

Glossary of Computer Terms

Accumulator – part of the computer's logic unit which stores
the intermediate results of computations
Address – a number which refers to a location, generally in
the computer's memory, where information is stored
Algorithm – the sequence of steps used to solve a problem
Alphanumeric – generally used to describe a keyboard, and
signifying that the keyboard has alphabetical and numerical
keys. A numeric keypad, by contrast, only has keys for the
digits one to nine, with some additional keys for arithmetic
operations, much like a calculator
APL – this stands for A Programming Language, a language
developed by Iverson in the early 1960s, which supports a
large set of operators and data structures. It uses a non-
standard set of characters
Application software – these are programs which are tailored
for a specific task, such as word processing, or to handle
mailing lists.
ASCII – stands for American Standard Code for
Information Interchange. This is an almost universal code
for letters, numbers and symbols, which has a number
between 0 and 255 assigned to each of these, such as 65 for
the letter A
Assembler – this is a program which converts another
program written in an assembly language (which is a
computer program in which a single instruction, such as
ADD, converts into a single instruction for the computer)
into the language the computer uses directly
BASIC – stands for Beginner's All-purpose Symbolic
Instruction Code, the most common language used on
microcomputers. It is easy to learn, with many of its
statements being very close to English
Batch – a group of transactions which are to be processed by
a computer in one lot, without interruption by an operator

Baud – a measure of the speed of transfer of data. It
generally stands for the number of bits (discrete units of
information) per second
Benchmark – a test which is used to measure some aspect of
the performance of a computer, which can be compared to
the result of running a similar test on a different computer
Bit – an abbreviation for binary digit. This is the smallest
unit of information a computer circuit can recognise.
Binary – a system of counting in which there are only two
symbols, 0 and 1 (as opposed to the ordinary decimal
system, in which there are ten symbols, 0, 1, 2, 3, 4, 5, 6, 7, 8
and 9). Your computer `thinks' in binary
Boolean Algebra – the algebra of decision-making and logic,
developed by English mathematician George Boole, and at
the heart of your computer's ability to make decisions
Bootstrap – a program, run into the computer when it is first
turned on, which puts the computer into the state where it
can accept and understand other programs
Buffer – a storage mechanism which holds input from a
device such as keyboard, then releases it at a rate which the
computer dictates
Bug – an error in a program
Bus – a group of electrical connections used to link a
computer with an ancillary device, or another computer
Byte – a group of bits, generally 8, which are written to or
read from memory as a single unit. Information is always
stored in whole bytes
Central Processing Unit (CPU) – the heart of the computer,
where arithmetic, logic and control functions are carried out
Character code – the number in ASCII (see ASCII) which
refers to a particular symbol, such as 32 for a space and 65
for the letter 'A'
COBOL – stands for Common Business Orientated
Language, a standard programming language, close to
English, which is used primarily for business
Compiler – a program which translates a program written in
a high level (human-like) language into a machine language
which the computer understands directly
Concatenate – to add two strings together
CP/M – stands for Control Program/Monitor, an almost
universal disk operating system developed and marketed by
Digital Research, Pacific Grove, California, whose
trademark it is.

222
	 223

^Appendices •	 Appendices

Data – a general term for information processed by a
computer
Database – a collection of data, organised to permit rapid
access by computer
Debug – to remove bugs (errors) from a program
Disk – a magnetic storage medium (further described as a
`hard disk', `floppy disk' or even `floppy') used to store
computer information and programs. The disks resemble, to
a limited extent, 45 rpm sound records, and are generally
eight, five and a quarter, or three inches in diameter.
Smaller `microdisks' are also available for some systems
Documentation – the written instructions and explanations
which accompany a program
DOS – stands for Disk Operating System (and generally
pronounced `doss'), the versatile program which allows a
computer to control a disk system
Dot-matrix printer – a printer which forms the letters and
symbols by a collection of dots, usually on an eight by eight,
or seven by five, grid
Double-density – adjective used to describe disks when
recorded using a special technique which, as the name
suggests, doubles the amount of storage the disk can provide
Dynamic memory – computer memory which requires
constant recharging to retain its contents
EPROM – stands for Erasable Programmable Read Only
Memory, a device which contains computer information in a
semi-permanent form, demanding sustained exposure to
ultra-violet light to erase its contents
Error messages – information from the computer to the user,
sometimes consisting only of numbers or a few letters, but
generally of a phrase (such as `Out of memory') which points
out a programming or operational error which has caused
the computer to halt progam executions
Field – a collection of characters which form a distinct group,
such as an identifying code, a name or a date; a field is
generally part of a record
File – a group of related records which are processed
together, such as an inventory file or a student file
Firmware – The solid components of a computer system are
often called the `hardware', the programs, in machine-
readable form on disk or cassette, are called the `software',
and programs which are hardwired into a circuit, are called
`firmware'. Firmware can be altered, to a limited extent, by

software in some circumstances
Flag – this is an indicator within a program, with the `state of
the flag' (i.e. the value it holds) giving information regarding
a particular condition
Floppy disk – see disk
Flowchart – a written layout of program structure and flow,
using various shapes, such as a rectangle with sloping sides
for a computer action, and a diamond for a computer
decision, is called a flow chart. A flowchart is generally
written before any lines of program are entered into the
computer
FORTRAN – a high level computer language, generally used
for scientific work (from FORmula TRANslation)
Gate – a computer `component' which makes decisions,
allowing the circuit to flow in one direction or another,
depending on the conditions to be satisfied
GIGO – acronym for `Garbage In Garbage Out', suggesting
that if rubbish or wrong data is fed into a computer, the
result of its processing of such data (the output) must also be
rubbish
Global – a set of conditions which affects the entire program
is called `global', as opposed to local'
Graphics – a term for any output of computer which is not
alphanumeric, or symbolic
Hard copy – information dumped to paper by a printer.
Hardware – the solid parts of the computer (see `software'
and `firmware')
Hexadecimal – a counting system much beloved by machine
code programmers because it is closely related to the
number storage methods used by computers, based on the
number 16 as opposed to our `ordinary' number system
which is based on 10)
Hex pad – a keyboard, somewhat like a calculator, which is
used for direct entry of hexadecimal numbers
High-level languages – programming languages which are
close to English. Low-level languages are closer to those
which the computer understands. Because high-level
languages have to be compiled into a form which the
computer can understand before they are processed, high-
level languages usually run more slowly than their low-level
counterparts
Input – any information which is fed into a program during
execution

224
	

225

Appendices • Appendices

I/O – stands for Input/Output; an I/O port is a device the
computer uses to communicate with the outside world
Instruction – an element of programming code, which tells
the computer to carry out a specific task. An instruction in
assembler language, for example, is ADD which (as you've
probably guessed) tells the computer to carry out an
addition
Interpreter – converts the high-level ('human-
understandable') program into a form which the computer
can understand
Joystick – an analogue device which feeds signal into a
computer which is related to the position which the joystick
is occupying; generally used in games programs
Kilobyte – a unit of storage measurement; one kilobyte
(generally abbreviated as K) equals 1024 bytes.
Line printer – a printer which prints a complete line of
characters at one time
Low-level language – a language which is close to that used
within the computer (see high-level language)
Machine language – the step below a low-level language; the
language which the computer understands directly
Mainframe – the term for `giant' computers such as the IBM
370. Computers are also classed as mini-computers and
microcomputers (such as the computer you own)
Memory – the device or devices used by a computer to hold
information and programs being currently processed, and
for the instruction set fixed within a computer which tells it
how to carry out the demands of the program. There are
basically two types of memory (see RAM and ROM)
Microprocessor – the `chip' which lies at the heart of your
computer. This does the `thinking'
Modern – stands for MOdulator/DEModulator, and is a
device which allows one computer to communicate with
another via the telephone
Monitor – (a) a dedicated television-screen for use as a
computer display unit, contains no tuning apparatus; (b) a
program within a computer which enables it to understand
and execute certain instructions
Motherboard – a unit, generally external, which has slots to
allow additional `boards' (circuits) to be plugged into the
computer to provide facilities (such as high-resolution
graphics, or `robot control') which are not provided with the
standard machine

Mouse – a control unit, slightly smaller than a box of
cigarettes, which is rolled over the desk, moving an on-
screen cursor in parallel to select options and make decisions
within a program. `Mouses' work either by sensing the
action of their wheels, or by reading a grid pattern on the
surface upon which they are moved
Network – a group of computers working in tandem
Numeric pad – a device primarily for entering numeric
information into a computer, similar to a calculator
Octal – a numbering system based on eight (using the digits
0, 1, 2, 3, 4, 5,6and7)
On-line – device which is under the direct control of the
computer
Operating system – this is the `big boss' program or series of
programs within the computer which controls the
computer's operation, doing such things as calling up
routines when they are needed and assigning priorities
Output – any data produced by the computer while it is
processing, whether this data is displayed on the screen or
dumped to the printer, or is used internally
Pascal – a high level language, developed in the late 1960s by
Niklaus Wirth, which encourages disciplined, structured
programming
Port – an output or input `hole' in the computer, through
which data is transferred
Program – the series of instructions which the computer
follows to carry out a predetermined task
PILOT – a high level language, generally used to develop
computer programs for education
RAM – stands for Random Access Memory, and is the
memory on board the computer which holds the current
program. The contents of RAM can be changed, while the
contents of ROM (Read Only Memory) cannot be changed
under software control
Real-time – when a computer event is progressively in line
with time in the `real world', the event is said to be occurring
in real time. An example would be a program which showed
the development of a colony of bacteria which developed at
the same rate that such a real colony would develop. Many
games, which require reactions in real time, have been
developed. Most `arcade action' programs occur in real time
Refresh – The contents of dynamic memories (see memory)
must receive periodic bursts of power in order for them to

226
	 227

•Appendices • Appendices

maintain their contents. The signal which `reminds' the
memory of its contents is called the refresh signal
Register – a location in computer memory which holds data
Reset – a signal which returns the computer to the point it
was in when first turned on
ROM – see RAM
RS-232 – a standard serial interface (defined by the
Electronic Industries Association) which connects a modem
and associated terminal equipment to a computer
S-100 bus – this is also a standard interface (see RS-232)
made up of 100 parallel common communication lines which
are used to connect circuit boards within micro-computers
SNOBOL – a high level language, developed by Bell
Laboratories, which uses pattern recognition and string
manipulation
Software – the program which the computer follows (see
firmware)
Stack – the end point of a series of events which are accessed
on a last in, first out basis'
Subroutine – a block of codes, or program, which is called up
by another program
Syntax – as in human languages, the syntax is the structure
rules which govern the use of a computer language
Systems software – sections of code which carry out
administrative tasks, or assist with the writing of other
programs, but which are not actually used to carry out the
computer's final task
Thermal printer – a device which prints the output from the
computer on heat-sensitive paper. Although thermal
printers are quieter than other printers, the output is not
always easy to read, nor is the used paper easy to store
Time -sharing – this term is used to refer to a large number of
users, on independent terminals, making use of a single
computer, which divides its time between the users in such a
way that each of them appears to have the `full attention' of
the computer
Turnkey system – a computer system (generally for business
use) which is ready to run when delivered, needing only the
`turn of a key' to get it working
Volatile memory – a memory device which loses its contents
when the power supply is cut off (see memory, refresh,
ROM and RAM)
Word processor – a dedicated computer (or a computer

operating a word-processing program) which gives access to
an `intelligent typewriter' with a large range of correction
and adjustment features

228	 229

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115

